• 제목/요약/키워드: Pressure Differential Control Valve

검색결과 38건 처리시간 0.031초

오리피스를 이용한 고차압 제어 버터플라이 밸브의 캐비테이션 저감에 관한 연구 (A Study on Reduction of Cavitation with Orifice on High Differential Pressure Control Butterfly Valve)

  • 이상범
    • 한국산업융합학회 논문집
    • /
    • 제25권1호
    • /
    • pp.131-139
    • /
    • 2022
  • The exchange of goods over the sea is a situation in which the amount of trade between countries is gradually increasing. In order to maintain the optimal operating condition, the ship maintains stability and optimal operating conditions by inserting or withdrawing ballast water from the ballast tank according to the loading condition of cargo capacity is also increasing. Control valves play an important role in controlling fluid flow in these pipes. When the flow rate is controlled using a control valve, problems such as cavitation, flashing, and suffocating flow may occur due to high differential pressure, and in particular, damage to valves and pipes due to cavitation is a major problem. Therefore, in this study, the cavitation phenomenon is reduced by installing orifices at the front and rear ends of the high differential pressure control butterfly valve to reduce the sudden pressure drop at the limiting part of the butterfly valve step by step. The flow coefficient according to the shape of the orifice, the degree of cavitation occurrence, and the correlation were analyzed using a CFD(Cumputational Fluid Dynamics), and an optimal orifice design for reducing cavitation is derived.

고차압 제어 버터플라이 밸브의 오리피스 형상에 관한 연구 (A Study on the Orifice Shape of High-Differential Pressure Control Butterfly Valve)

  • 윤익상;진정인;류성기
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.107-114
    • /
    • 2021
  • Butterfly valves are used in various industries to control the flow rate, flow direction, pressure, and temperature. These are gaining popularity in the field of plant industry to enable high-differential pressure because of their low maintenance costs and ease of installation. This study presents a numerical analysis method to analyze changes in the flow characteristics of a high-differential pressure control butterfly valve based on the location and shape of the orifice. The numerical analysis was conducted using a commercial CFD program. The analysis results show a correlation between the orifice shape and cavitation phenomenon.

고차압 제어밸브 트림부 분석 및 개선방안 검토 (The Intact Evaluation of High Pressure Control Valve Trim Parts)

  • 장훈;윤인식;김영범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.581-584
    • /
    • 2008
  • At the inlet and outlet differential pressure and The fluid velocity over 32m/s are damaged (Plug, sheet ring, trim) About reduction trim parts of the control valve. AOV of the differential pressure 1,500psi become often the damage in the nuclear power plant. Damages of AOV studied CFD analysis and improvement program. Multi-stage trim designs which decrease a fluid kinetic energy are demanded and AOV parts are demanded case hardening and material change.

  • PDF

EFFECT OF THE DIFFERENTIAL PRESSURE BY THE BLOW-BY GAS FLOW ON THE PCV VALVE WITH A CRACK

  • Song, S.M.;Kwon, O.H.;Lee, Y.W.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.219-224
    • /
    • 2007
  • Recently, atmospheric contaminations has become worse due to the increased number of automobile. The PCV (Positive Crankcase Ventilation) valve acts as a flow control to allow re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. Also, during the fabrication of the PCV valve, micro cracks may occur in the valve body and be extended under operation. The excessive stress distribution and crack initiation on the PCV valve body would bring an unstable blow-by gas flow rate control and would cause valve failure. The purpose of this study is to examine the crack affects on the stress and strain variations on the PCV valve according to the inlet and outlet manifold under differential pressures. From the results, we can explain the behavior of the crack extension for a safe condition of PCV valve.

자동차용 PCV밸브내 유통특성에 의한 밸브응력 및 변형에 미치는 입출구 차압의 영향 (The Effect of In-Outlet Differential Pressure on a Valve Body Stress and Deformation by the Blow-by Gas Flow Characteristic in the PCV valve for Automobile)

  • 권오헌;이연원;송상민;이종훈;강지웅
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.36-41
    • /
    • 2005
  • PCV(Positive Crankcase Ventilation) valve acts as a flow control valve to get a re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. The blow-by gas of the crankcase should be eliminated or taken properly because it cause corrosion to critical parts, and contributes to increase crankcase pressure that can cause a drop in efficiency. The excessive stress and strain on the PCV valve that remove these harmful gas would be bring the difficult on the flow rate control and failure of the valve. Those condition inevitably induce the accident. Therefore, this study purpose is FEM evaluation of the stresses and deformation in the X3 PCV model according to the change of the differential pressure between inlet and outlet. From results, the maximum equivalent stresses increased linearly according to the increase of the differential pressure at the about 50mm from the inlet position and were under the yield strength of the valve. And the deformations were relatively small regardless of the in-outlet differential pressure variation.

보일러 급수펌프용 1500lb 고차압 제어밸브 유량시험 및 수치해석에 관한 연구 (A Study on the Flow Coefficient Test and Numerical Analysis about 1500lb High-Pressure Drop Control Valve for Boiler Feedwater Pump)

  • 이권일;장훈;이치우
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.541-547
    • /
    • 2022
  • Before making a prototype, we predicted the inlet/outlet differential pressure and flow coefficient, which are the most basic design data for the valve through the design and numerical analysis of the trim, which is the most important in the localization development of the 1500Ib high differential pressure control valve used for boiler feed water. As a result, the design value and the analysis value were found to be about 98% similar. The flow field within the fluid velocity of 23m/s to prevent cavitation was also found. The result of the numerical analysis on thermal stress due to the characteristics of valves exposed to high temperatures showed that it was found to be about 18% less than the allowable stress of the bolt fixing the trim. When all loads such as pressure, self-weight, and vibration are applied, however, it is judged to go beyond the currently calculated thermal stress, exceeding the allowable stress.

냉난방수배관시스템용 차압독립형 유량제어밸브의 유동특성 연구 (A Study of Flow Characteristics in Pressure Independent Control Valve for Hydronic System)

  • 민준기;원보영;정신규
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.9-15
    • /
    • 2017
  • In this study, set values of PICV(Pressure Independent Control Valve) were simulated according to the pressure distribution and velocity. The higher the set value and the open rate, as the lower the pressure in the neck. On the contrary, the lower the set value and open rate, as the higher the pressure in the neck. When the set value was small, the pressure was distributed sufficiently and confirmed that the pressure was generated by the VOF, confirming that it could generate a vapor pressure. When the set value 100 %, the lower corn open rate of the differential pressure was 46 % to 29 %, set value 100 % was 29 % to 19 %, and set value 6 % was 12 % to 6 % for the lower corn open rate percentile, it was limited to within 50 %. Thus, the results of this study on the correlation between open rate and differential pressure of the set value of the PICV will be beneficial to improve performance of flow control valves and contribute to their efficient operation used for a hydronic system.

반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가 (Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing)

  • 안진홍;강기태;안강호
    • 반도체디스플레이기술학회지
    • /
    • 제7권3호
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

원자력 밸브용 헬리컬트림의 유동 타입에 따른 특성 (The characteristics in flow type of helical trim to unclear valve)

  • 이덕구;김영범;윤인식;황지혁;권갑주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3074-3079
    • /
    • 2007
  • The conventional control valves have been used at the locations occurring high differential pressure and high temperature which causes cavitation, flashing, severe vibration due to abrupt flow change, and sudden pressure drop. Previous studies concerning control valves focused to prevent damage of valve trim due to the internal leak and low flow rate. The newly designed helical trim of control valve has been installed at the location of high pressure change and high temperature in a power plant, and operated for evaluation. It is confirmed that the new control valve developed in this study generates flow characteristics in comparison with previous helical trim of control valves.

  • PDF

Modeling and Simulation of an EPPR Valve Coupled with a Spool Valve

  • Khan, Haroon Ahmad;Yun, So-Nam
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.30-35
    • /
    • 2019
  • EPPR (Electro-hydraulic Proportional Pressure Reducing) valves are pressure control valves. In this study, an independent metering valve (IMV), which is a combination of a spool valve opened and closed with the help of an EPPR valve, was discussed. The overall performance of the valve (IMV) was obtained by the respective modeling and simulation of the system. The valve investigated in this study is to be used for independent metering of hydraulic excavator actuator e.g. boom, arm, bucket etc. To design the model, continuity equations and force balance equations were used. The set of differential equations were then simulated in Simulink using ODE45 option in the configuration toolbox. The valve has to be able to control the flow rate going in and out of the cylinder separately, which is why the particular configuration was needed and selected.