• 제목/요약/키워드: Pressure Cycling Life

검색결과 12건 처리시간 0.027초

공기호흡기용 Type3 용기의 자긴압력과 수명에 관한 연구 (Study on the Autofrettage Pressure for SCBA Type3 Cylinder)

  • 김광석;이교민;이재훈;조성민
    • 한국유체기계학회 논문집
    • /
    • 제19권3호
    • /
    • pp.53-56
    • /
    • 2016
  • In this study, experiments and finite element method analysis were used to determine the autofrettage pressure that is optimal and then maximizes the cycling life of Type3 composite cylinders used in self-contained breathing apparatus. For both approaches, the cylinders were pressurized at 100, 110, ${\ldots}$, 290 % of the test pressure, respectively. The stresses were computed by the FEM analysis; while the strains of cylinders were recorded and the failure modes were monitored during the cycling test. As a result, from the good agreements between the simulations and experiments, it was concluded that at least 70 % of the test pressure should be applied as the autofrettage pressure in order to takes visible effect on the cycling life, and 160 % of the test pressure induces the maximum cycling life and the desired failure mode.

Type 3 복합재 압력용기의 반복수명 예측 방법에 대한 연구 (Cycling life prediction method of the filament-wound composite cylinders with metal liner)

  • Park, Ji-Sang;Chung, Sang-Su;Chung, Jae-Han
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.45-48
    • /
    • 2005
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on liner to improve cycling life can be applied. In this study, finite element analysis technique is presented, which can predict accurately the compressive residual stress on liner induced by autofrettage and stress behavior after. Material and geometry non-linearity is considered in finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

  • PDF

A Study on Long-Term Cycling Performance by External Pressure Change for Pouch-Type Lithium Metal Batteries

  • Seong-Ju Sim;Bong-Soo Jin;Jun-Ho Park;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.314-320
    • /
    • 2024
  • Lithium dendrite formation is one of the most significant problems with lithium metal batteries. The lithium dendrite reduces the lithium metal batteries' cycling life and safety. To apply consistent external pressure to a lithium metal pouch cell, we design a press jig in this study. External pressure creates dense lithium morphology by preventing lithium dendrite formation. After 300 cycles at 1 C, the cells with the external pressure perform far better than the cells without it, with a cycling retention of 97.8%. The formation of stable lithium metal is made possible by external pressure, which also enhances safety and cyclability.

금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구 (Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner)

  • 박지상;정상수;정재한
    • Composites Research
    • /
    • 제19권1호
    • /
    • pp.22-28
    • /
    • 2006
  • 금속재 라이너를 갖는 복합재 압력용기는 라이너의 반복 수명 향상을 위해 제조 공정 중 라이너가 압축잔류응력을 갖도록 하는 자긴처리 공정을 적용할 수 있다. 본 연구에서는 자긴처리에 의한 라이너의 압축잔류응력과 이후의 응력 거동을 정확히 예측할 수 있는 유한요소해석 기법을 제시하고, 이러한 해석 결과를 바탕으로 복합재 압력용기의 반복 수명을 예측할 수 있는 방법을 제안한다. 재료 및 기하학적 비선형성을 고려한 3차원 비선형 유한요소해석을 통해 라이너의 응력 거동을 정확히 예측하고, 압력용기의 반복수명을 결정짓는 파라미터로 금속재 라이너의 폰미세스 응력을 도입한다. 라이너 재료에 대한 피로시험과 복합재 압력용기 시제품에 대한 반복시험을 통해 제안된 방법의 타당성과 유효성을 입증한다.

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

Influence of Safety Valve Pressure on Gelled Electrolyte Valve-Regulated Lead/Acid Batteries Under Deep Cycling Applications

  • Oh, Sang-Hyub;Kim, Myung-Soo;Lee, Jin-Bok;Lee, Heung-Lark;, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.75-80
    • /
    • 2002
  • Cycle life tests have been carried out to evaluate the influence of safety valve pressure on valve regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100% DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g and 235.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18% after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than $50{\mu}m$, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to be water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performances and the failure modes of the gelled electrolyte valve-regulated lead acid batteries.

이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구 (A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner)

  • 김효준
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.46-51
    • /
    • 2013
  • 복합재 압력용기는 높은 비강성과 비강도 그리고 내피로성으로 수소연료전지자동차와 천연가스자동차에 사용된다. 이음매가 없는 일체형 라이너를 갖는 복합재 압력용기는 고강도 탄소섬유와 에폭시 레진으로 라이너 전체를 감싼다. 본 연구에서는 구조적으로 취약한 너클 부위와 압축잔류응력을 고려하여 필라멘트 와인딩 패턴과 자긴압력 설계 기법을 제시하였다. 복합재 압력용기 시제품에 대한 압력반복시험을 통해 제안된 방법을 검증한다.

장기사용된 1Cr-0.5Mo 주증기관의 수명평가 (Life Evaluation of Long-time Used 1Cr-0.5Mo Main Steam Pipe)

  • 백수곤;홍성인
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.70-76
    • /
    • 1998
  • Most fossil power plants and many critical components will be approaching the end of their nominal design life. At the same time, utilities are finding it economically attractive to extend the use of these plants for several more years, Especially Main steam pipe that operated under high temperature and pressure, often under the more severe operating conditions associated with cycling duty, is most important pipe system and critical component in fossil power plant. To extend the viability of older pipe system and to improve the operation and maintenance reliability, some technologies of precise diagnosis and life management have evolved out of the necessity. The purpose of this study is to descrive the related technologies and show the example of one power plants. The purpose of this study is to descrive the related technologies and show the example of one power plants. The stress analysis was done using ANSYS FEM Code. The branch area from main steam to turbine was the high stressed zone. To evaluate the degradation of the pipe material, replica, visual check, magnetic test, hardness test were done at the welding spot. The degradation level of welding point was E/F, so the remaining life of the welded area was about 0-25%.

  • PDF

FUNDAMENTAL UNDERSTANDING OF CRACKING AND BULGING IN COKE DRUMS

  • Penso, Jorge;Tsai, Chon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.675-680
    • /
    • 2002
  • Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling service have been well known problems in the petrochemical, power and nuclear industries. However, published literature and industry surveys show that similar problems have been occurring during the last 50 years. A better understanding of the causes of cracking and bulging causes is needed to improve the reliability of these pressure vessels. This study attempts to add information required for increasing the knowledge and fundamental understanding required. Typical examples of this problem are the coke drums in the delayed coking units refinery process. This case was selected for experimental work, field study and results comparison. Delayed coking units are among the refinery units that have higher economical yields. To shut down these units represents a high negative economical impact in refinery operations. Also, the maintenance costs associated with repairs are commonly very high. Cracking and bulging occurrences in the coke drums, most often at the weld areas, characterize the history of the operation of delayed coking units. To design and operate more robust coke drums with fewer problems, an improved metallurgical understanding of the cracking and bulging mechanisms is required. A methodology that is based field experience revision and metallurgical analyses for the screening of the most important variables, and subsequent finite element analyses to verify hypotheses and to rank the variables according to their impact on the coke drum lives has been developed. This indicated approach provides useful information for increasing coke drum reliability. The results of this work not only order the most important variables according to their impact in the life of the vessels, but also permit estimation of the life spans of coke drums. In conclusion, the current work shows that coke drums may fail as a combination of thermal fatigue and other degradation mechanisms such as: corrosion at high and low temperatures, detrimental metallurgical transformations and plastic deformation. It was also found that FEA is a very valuable tool for understanding cracking and bulging mechanisms in these services and for ranking the design, fabrication, operation and maintenance variables that affect coke drum reliability.

  • PDF

Type3 복합재료 압력용기의 복합재층 손상에 따른 영향성 평가를 위한 해석기법에 관한 연구 (A Study on Analysis Method to Evaluate Influence of Damage on Composite Layer in Type3 Composite Cylinder)

  • 이교민;박지상;이학구;김영섭
    • Composites Research
    • /
    • 제23권6호
    • /
    • pp.7-13
    • /
    • 2010
  • CNG 차량에서 실사용 중 Type3 복합재료 압력용기의 외부 복합재 층에 결함이 발생된다면, 용기의 구조적 성능 즉, 원래의 설계수명보다 반복수명이 감소되는 현상을 초래할 수 있다. 이에 따라, 본 연구에서는 복합재 결함을 고려한 복합재료 압력용기의 유한요소 모델링과 해석 기법을 제시하였다. Type3 복합재료 압력용기의 유한요소해석은 자긴처리 공정에서 알루미늄 라이너의 소성 변형으로 인해 경로 의존적 현상을 보이므로, 실사용 중 결함이 발생되는 실제 환경을 고려한 해석에서 결함은 자긴압력 이후에 도입되어야한다. 이러한 상황의 사실적인 시뮬레이션을 위해, 해석의 중간단계에서 결함이 도입되는 유한요소 모델링과 해석 기법이 제시되었으며, 해석결과는 해석의 시작단계에서부터 모델에 초기결함을 내포하는 일반적 유한요소해석과 비교되었다. 제안된 해석 기업은 Type3 복합재료 압력용기의 복합재층 손상에 따른 영향성 평가 및 실사용 중에서의 검사 기준을 마련하는데 효과적으로 사용될 수 있다.