DOI QR코드

DOI QR Code

Influence of Safety Valve Pressure on Gelled Electrolyte Valve-Regulated Lead/Acid Batteries Under Deep Cycling Applications

  • Published : 2002.01.20

Abstract

Cycle life tests have been carried out to evaluate the influence of safety valve pressure on valve regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100% DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g and 235.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18% after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than $50{\mu}m$, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to be water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performances and the failure modes of the gelled electrolyte valve-regulated lead acid batteries.

Keywords

References

  1. Rand, D. A. J. J. Power Sources 1997, 64, 157 https://doi.org/10.1016/S0378-7753(96)02517-7
  2. Tuphorn, H. J. Power Sources 1992, 31, 57 https://doi.org/10.1016/0378-7753(90)80053-G
  3. May, G. J. J. Power Sources 1993, 42, 147 https://doi.org/10.1016/0378-7753(93)80143-D
  4. Culpin, B.; Rand, D. A. J. J. Power Sources 1991, 36, 415 https://doi.org/10.1016/0378-7753(91)80069-A
  5. Kim, I.; Oh, S. H.; Kang, H. Y. Power Sources 1991, 13, 143
  6. Meissner, M. Power Sources 1999, 78, 99 https://doi.org/10.1016/S0378-7753(99)00019-1
  7. Takahashi, K.; Tsubota, M.; Yanesu, K.; Ando, K. J. Electrochem. Soc. 1983, 130, 2144 https://doi.org/10.1149/1.2119542
  8. Constanti, K. K.; Hollenkamp, A. F.; Koop, M. J.; McGregor, K. J. Power Sources 1995, 55, 269 https://doi.org/10.1016/0378-7753(95)02193-K
  9. Edwards, D. B.; Schmitz, C. J. Power Sources 2000, 85, 63 https://doi.org/10.1016/S0378-7753(99)00384-5
  10. Berndt, D. Maintenance-Free Batteries; John Wiley & Sons: New York, U.S.A., 1997
  11. Linden, D. Handbook of Batteries, 2nd ed.; McGraw-Hill: New York, U.S.A., 1995
  12. Dietz, H.; Voss, S.; D ring, H.; Garche, J.; Wiesener, K. J. Power Sources 1990, 31, 107 https://doi.org/10.1016/0378-7753(90)80058-L
  13. Dietz, H.; Radwan, M.; D ring, H.; Wiesener, K. J. Power Sources 1993, 42, 89 https://doi.org/10.1016/0378-7753(93)80139-G
  14. Kinoshita, K. Electrochemical Oxygen Technology; John Wiley and Sons: New York, U.S.A., 1992
  15. Bagshaw, N. E. J. Power Sources 1990, 31, 23 https://doi.org/10.1016/0378-7753(90)80050-N
  16. Strebe, J.; Reichman, B.; Mahato, B.; Bullock, K. R. J. Power Sources 1990, 31, 43 https://doi.org/10.1016/0378-7753(90)80052-F
  17. Maja, M.; Penazzi, N. J. Power Sources 1989, 25, 99 https://doi.org/10.1016/0378-7753(89)85002-5
  18. Calasanzio, D.; Caselli, M.; Ghiotto, D. J. Power Sources 1995, 53, 143 https://doi.org/10.1016/0378-7753(94)01996-9
  19. Butler, W. A.; Venuto, C. J.; Wisler, D. V. J. Electrochem. Soc. 1970, 117, 1339 https://doi.org/10.1149/1.2407315
  20. Hill, R. J. J. Power Sources 1984, 11, 19 https://doi.org/10.1016/0378-7753(84)80063-4
  21. McGregor, K.; Hollenkamp, A. F.; Barber, T. D.; Huynh, T. D.; Ozgun, H.; Phyland, C. G.; Urban, A. J.; Vella, D. G.; Vu, L. H. J. Power Sources 1998, 73, 65 https://doi.org/10.1016/S0378-7753(97)02782-1
  22. Landfors, J. J. Power Sources 1994, 52, 99 https://doi.org/10.1016/0378-7753(94)01944-4
  23. Simon, A. C.; Caulder, S. M.; Stemmle, J. T. J. Electrochem. Soc. 1975, 122, 461 https://doi.org/10.1149/1.2134240
  24. Wagner, R. J. Power Sources 1995, 53, 153 https://doi.org/10.1016/0378-7753(94)01983-3

Cited by

  1. batteries in an aqueous medium vol.6, pp.3, 2016, https://doi.org/10.1039/C5RA21378A