DOI QR코드

DOI QR Code

Electron Tunneling and Electrochemical Currents through Interfacial Water Inside an STM Junction

  • Song, Moon-Bong (Department of Advanced Materials Chemistry, Korea University) ;
  • Jang, Jai-Man (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
  • Published : 2002.01.20

Abstract

The apparent barrier height for charge transfer through an interfacial water layer between a Pt/Ir tip and a gold surface has been measured using STM technique. The average thickness of the interfacial water layer inside an STM junction was controlled by the amount of moisture. A thin water layer on the surface was formed when relative humidity was in the range of 10 to 80%. In such a case, electron tunneling through the thin water layer became the majority of charge transfers. The value of the barrier height for the electron tunneling was determined to be 0.95 eV from the current vs. distance curve, which was independent of the tip-sample distance. On the other hand, the apparent barrier height for charge transfer showed a dependence on tip-sample distance in the bias range of 0.1-0.5 V at a relative humidity of approximately 96%. The non-exponentiality for current decay under these conditions has been explained in terms of electron tunneling and electrochemical processes. In addition, the plateau current was observed at a large tip-sample distance, which was caused by electrochemical processes and was dependent on the applied voltage.

Keywords

References

  1. Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy, Methods and Applications; Cambridge: New York, 1994
  2. Schuster, R.; Barth, J. V.; Wintterlin, J.; Behm, R. J.; Ertl, G. Ultramicroscopy 1992, 42-44, 533 https://doi.org/10.1016/0304-3991(92)90319-F
  3. Biscarini, F.; Kenkre, V. M. Surf. Sci. 1999, 426, 336 https://doi.org/10.1016/S0039-6028(99)00292-7
  4. Olesen, L.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F.; Schiotz, J.; Stoltze, P.; Jacobsen, K. W.; Norskov, J. K. Phys. Rev. Letts. 1994, 72, 2251 https://doi.org/10.1103/PhysRevLett.72.2251
  5. Mamin, H. J.; Ganz, E.; Abraham, D. W.; Thomson, R. E.; Clarke, J. Phys. Rev. 1986, B34, 9015 https://doi.org/10.1103/PhysRevB.34.9015
  6. Hong, Y. A.; Hahn, J. R.; Kang, H. J. Chem. Phys. 1998, 108, 4367
  7. Hahn, J. R.; Hong, Y. A.; Kang, H. Appl. Phys. 1998, A66, S467 https://doi.org/10.1007/s003390051184
  8. Fan, F.-R. F.; Bard, A. J. Science 1995, 270, 1849 https://doi.org/10.1126/science.270.5243.1849
  9. Heim, M.; Eschrich, R.; Hillebrand, A.; Knapp, H. F.; Guckenberger, R.; Cevc, G. J. Vac. Sci. Technol. 1996, B42, 1498
  10. Schmickler, W. Surf. Sci. 1995, 335, 416 https://doi.org/10.1016/0039-6028(95)00451-3
  11. Pan, J.; Jing, T. W.; Lindsay, S. M. J. Phys. Chem. 1994, 98, 4205 https://doi.org/10.1021/j100067a001
  12. Meepagala, S. C.; Real, F. Phys. Rev. 1994, B49, 10761 https://doi.org/10.1103/PhysRevB.49.10761
  13. Guckenberger, R.; Heim, M.; Cevc, G.; Knapp, H. F.; Weigrabe, W.; Hillebrand, A. Science 1994, 266, 1538 https://doi.org/10.1126/science.7985024
  14. Vaught, A.; Jing, T. W.; Lindsay, S. M. Chem. Phys. Letts. 1995, 236, 306 https://doi.org/10.1016/0009-2614(95)00223-Q
  15. McCarley, R. L.; Hendricks, S. A.; Bard, A. J. J. Phys. Chem. 1992, 96,10089 https://doi.org/10.1021/j100204a002
  16. Sass, J. K.; Gimzewski, J. K. J. Electroanal. Chem. 1991, 308, 333 https://doi.org/10.1016/0022-0728(91)85079-5
  17. Song, M. B.; Jang, J. M.; Bae, S. E.; Lee, C. W. accepted for publication in Langmuir
  18. Lang, N. D. Phys. Rev. 1987, B36, 8173 https://doi.org/10.1103/PhysRevB.36.8173
  19. Ahn, J. H.; Pyo, M. H. Bull. Korean Chem. Soc. 2000, 21, 644

Cited by

  1. Low-temperature phonon transport in 3D point-contacts (Review) vol.31, pp.11, 2005, https://doi.org/10.1063/1.2127874
  2. AFM lithography for the definition of nanometre scale gaps: application to the fabrication of a cantilever-based sensor with electrochemical current detection vol.15, pp.7, 2004, https://doi.org/10.1088/0957-4484/15/7/009
  3. Charge Transfer between STM Tip and Au(100) in Dry, H2O, and D2O Atmospheres vol.4, pp.4, 2013, https://doi.org/10.5229/jecst.2013.4.4.153
  4. Spatially, Temporally, and Quantitatively Controlled Delivery of Broad Range of Molecules into Selected Cells through Plasmonic Nanotubes vol.27, pp.44, 2002, https://doi.org/10.1002/adma.201503252