• Title/Summary/Keyword: Pressure Control Valve

Search Result 767, Processing Time 0.028 seconds

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Chon, Mun Soo;Park, Jung-Kwon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

A Study on Inequality Rate of Integrated Cylinder Lubricator System with an Accumulated Distribution by the Electronic Control in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 일체형 전자제어 축압분배 실린더 주유기 시스템의 주유 불균일률에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Kim, Su-Min;Bae, Chang Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.123-133
    • /
    • 2014
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke diesel engine is of great economic importance. A motor-driven cylinder lubricator for Sulzer RT-flex large two-stroke diesel engines developed by authors is in need of improving the lubricating system to lubricate cylinder parts optimally by an electronically controlled quill device according to changes of engine load and revolution speed. In order to apply the developed accumulating distributor to an integrated cylinder lubricator by the electronically controlled system as the third research stage, the lubricating system is improved in the electronically controlled quill device with a solenoid valve. In this study, the effects of lubricator revolution speed, driving pressure(or plunger stroke) and cylinder back pressure on oil feed rate and lubrication inequality rate are investigated by using the integrated cylinder lubricator system with an accumulated distribution by the electronic control(I.C.S.), and the oil feed rate and lubrication inequality rate of I.C.S. are compared with those of the motor-driven cylinder lubricator by the electronically controlled quill system equipped with an accumulating distributor(E.D.S.). It is found that the oil feed rate of I.C.S. is smaller than that of E.D.S. due to the reduction of delivery velocity by the higher delivery pressure, and the variances of lubrication inequality rate for I.C.S. have become smaller than those of E.D.S. as the driving pressure in all experimental conditions increases, except for the driving pressure of 26 bar(plunger stroke 2 mm) at the cylinder lubricator speed of 120 rpm.

Improved Design of Hydraulic Circuit of Front-end Loader for Bump Shock Reduction of an Agricultural Tractor (농업용 트랙터의 프론트 로더 충격 저감을 위한 유압 회로의 설계 개선)

  • Cho, Bong Jin;Ahn, Seong Wook;Lee, Chang Joo;Yoon, Young Hwan;Lee, Soo Seong;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2016
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements to mechanize routine agricultural tasks. When the FEL is used with a loaded bucket, careful operation is required to maintain safety and avoid spillage when the tractor passes a bump because a change in the gravity center of the tractor due to varied loadings can affect the stability of the tractor. Use of a boom suspension system consisting of accumulators and orifice dampers can be instrumental in reducing pitching vibrations while increasing the handling performance of the FEL-mounted tractor. The objective of this research was to reduce bump shocks by adding an orifice and a flow control valve to the original hydraulic circuit composed solely of accumulators. A simulation study was performed using the SimulationX program to investigate the effects of an accumulator and an orifice-throttle damper on bump shocks. Results showed that the peak pressure on a boom cylinder and the vertical acceleration of a bucket were significantly affected by use of both an accumulator and an orifice damper. In a field test conducted with a 75-kW tractor, the peak pressure of the boom cylinder, and the root mean square (RMS) vertical acceleration of the bucket and seat were reduced by on average, 23.0, 42.2, and 44.9% respectively, as compared to those measured with the original accumulator system, showing that an improved design for the accumulator hydraulic circuit can reduce bump shocks. Further studies are needed to design a tractor suspension system that includes the effects of cabin suspension and tires as well as dynamic analysis.

Simulation Analysis for the Development of 3 Stage IMV (양방향 3단 IMV 개발을 위한 시뮬레이션 해석)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.

Improved Design in Fishing Operation System for Small Inshore and Coastal Fishing Vessels-I -Design of a Automatic Winch System- (소형 연근해 어선의 조업 시스템 개선에 관한 연구-I -자동 권양 윈치 시스템의 설계-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.12-24
    • /
    • 2000
  • The electro-hydraulic servo winch system built in a automatic tension control equipment was designed with a latent need for an advanced system in fishing operations of the inshore and coastal fishing vessels. In order to keep the constant tension condition of warp under loading, a tension control circuit was added to the servo winch system.The dynamic performance in the open loop behaviour of the designed winch system was investigated and its applicability was tested for various possibilities of load using a load generator especially developed in order to this study.The mechanical characteristics of this system is different from that of a conventional type, that is, the tension, length, line speed and drum revolution can be automatically controlled by the information from various sensors, such as torque, rpm and pressure transducers. from the experiment results, it was verified that the servo winch system has very good output and tracking behaviour for the control input signals in different operating conditions though overshoot of out 8% in the transient characteristics of torque under the load though a overshoot of about 8% in the transient characteristics of torque under the load condition can be observed when the opening of servo valve, adjustable by the input voltage between - 10 V up to 10 V, changed suddenly.Consequently, the improved fishing winch system can be effectively used as the automatic shooting and hauling equipment of low cost for small inshore and coastal fishing vessels which engage in net fishing.

  • PDF

Design and Performance Evaluation of a Flow Regulator for Thrust Control of a Liquid Rocket Engine (액체로켓엔진 추력제어를 위한 유량제어밸브의 설계 및 성능 평가)

  • Jung, Tae-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.443-446
    • /
    • 2012
  • A thrust control valve of a liquid rocket engine plays a role to increase or decrease the thrust of an LRE by modulating the flow rate of propellant into a gas-generator. This paper deals with a flow regulator that has functions of not only modulating thrust but also maintaining constant flow rate regardless of pressure change at inlet or outlet of the flow regulator. A direct acting flow regulator was fabricated and tested for the comparison of experimental and simulation results under steady-state conditions. The drawbacks and limitations of the flow regulator were analyzed. Also the new design of a flow regulator was proposed.

  • PDF

Performance Comparison of Automotive Air conditioning System by using R134a and R152a (R134a와 R152a 냉매를 이용한 자동차용 에어컨 시스템의 성능 비교)

  • Kim, Jeong-Su;Nam, Su-Byung;Lee, Dae-Woong;Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.9-14
    • /
    • 2006
  • This study presented the feasibility of R152a refrigerant as an alternative of R134a which is used in the current automobile air conditioning system. The performance of air conditioning system installed in the actual vehicle was tested using the climate wind tunnel. The experiments were conducted at various refrigerant charge quantities and various driving conditions such as city traffic, highway traffic and parking. Same components and lubricant were used for both R134a and R152a system. The effects of air set values of thermal expansion valve on the performance were also investigated. In case of the R152a system, refrigerant charge quantity can be reduced about 20%, better performance and superior compressor durability is expected due to the lower discharge pressure compared to the R134a system.

  • PDF

A Study on the combustion characteristcs for backpressure of exhaust system in SI engine (배기(排氣)시스템의 배압(背壓)과 연소특성(燃燒特性)에 관한 연구)

  • Park, Dai-Un;Park, Kyoung-Suk;Park, Se-Jong;Son, Sung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.206-212
    • /
    • 2004
  • It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile, it is needed to consider the pulsation noise, air current noise, vibration of air pipe which generate the intake and exhaust noise of the automobile. Moreover, the discharge sounds, intake sound, radiation sound, transmitted sound are occurred. To reduce this influence, the variable valve is needed and to control these factors, path transformation muffler and active type muffler are needed. While engine efficiency could be reduced with this transformationand resistance by the pressure, thermal property. In this study, how to design exhaust systems yielding higher condversion efficiency, lower backpressure and optimize the performance. this study is recommended for exhaust system and designers and engineers involved in SI engine exhaust system and it will furnish information for you to design more efficient.

  • PDF

Development of partial liquefaction system for liquefied natural gas carrier application using exergy analysis

  • Choi, Jungho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.609-616
    • /
    • 2018
  • The cargo handling system, which is composed of a fuel gas supply unit and cargo tank pressure control unit, is the second largest power consumer in a Liquefied Natural Gas (LNG) carrier. Because of recent enhancements in ship efficiency, the surplus boil-off gas that remains after supplying fuel gas for ship propulsion must be reliquefied or burned to regulate the cargo tank pressure. A full or partial liquefaction process can be applied to return the surplus gas to the cargo tank. The purpose of this study is to review the current partial liquefaction process for LNG carriers and develop new processes for reducing power consumption using exergy analysis. The developed partial liquefaction process was also compared with the full liquefaction process applicable to a LNG carrier with a varying boil-off gas composition and varying liquefaction amounts. An exergy analysis showed that the Joule-Thomson valve is the key component needed for improvements to the system, and that the proposed system showed an 8% enhancement relative to the current prevailing system. A comparison of the study results with a partial/full liquefaction process showed that power consumption is strongly affected by the returned liquefied amount.