• Title/Summary/Keyword: Pressure Control Solenoid valve

Search Result 135, Processing Time 0.022 seconds

A Study on the Design and Modeling of PWM Fuel Metering Unit for Miniature Turbo Engines (초소형 터보엔진용 PWM 연료조절장치의 설계 및 모델링에 관한 연구)

  • Joo Sang-Hyun;Choi Ho-Jin;Park Jong-Seung;Lim Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • A fuel metering unit using PWM(Pulse Width Modulated) solenoid valve has some advantages such as low cost, small size and simple structure. The mathematical model and its experimental rig of the fuel metering unit using PWM solenoid valve and CPDV(Constant Pressure Drop Valve) for miniature turbo engines were constructed. As the results of simulation, some major parameters which have dominant effects on the performance were found. And the experimental results verified the validity of established model by showing the good agreement with the numerical simulation results. Hence, this system modeling could be used effectively in the actual development of a PWM fuel control system.

Development of Performance Test Equipment for Easy-Hill Assist Valve (EHA 밸브 성능시험 장치 개발)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • When a manual transmission equipped car stops on an incline where the nose of the car is higher than the rear, hill-start control or hill-holder could prevent the vehicle from rolling backward as the car moves forward. The easy-hill assist valve consists of a check valve and a needle type ON/OFF solenoid valve connected in parallel; it is a hydraulic actuator that can maintain brake pressure using an electrical signal from the ECU. As the EHA valve is a safety-related component of the brake system, high reliability as well as superior dynamic performance is required for it to be applied in commercial vehicles. This paper presents the design of the EHA valve as a piece of equipment that can simulate the brake actuation pressure with a pressurizing piston. Following specific test standards, the experimental results validate the implemented functions of the test equipment, proving the test stand to be effective for the performance and endurance of the EHA valve.

A Study on the Pulsation Characteristics of ESP Hydraulic Modulator (자동차 ESP 유압 모듈레이터의 수격 특성에 관한 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3869-3875
    • /
    • 2012
  • In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed. The pulsation pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the pulsation pressure, high frequency PWM control of 20KHz was attempted. Also, an analytic method is proposed for the resultant forces of electromagnetism and hydraulic pressure generated in the real vehicle electro stability program. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be confirmed criteria for the optimal control of electronic stability program system.

Analysis of Dynamic Characteristics of Pneumatic Driving Solenoid Valve (공압구동용 솔레노이드밸브의 동특성 해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.731-736
    • /
    • 2011
  • A pneumatic driving solenoid valve operates pneumatic control devices by opening/closing operating flow passage when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of pneumatic driving solenoid valve is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of their operating durations of valve by AMESim analysis are compared with the results of experiments. In addition, the results of internal flow simulation with FLUENT are utilized to improve the accuracy of valve-modeling. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors; shape of control valve seat, drainage seat, rate of sealing diameter, volume of control cavity. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditions, which shall be used in Korea Space Launch Vehicle-II.

  • PDF

Examination of Cavitation-Induced Surface Erosion Pitting of a Mechanical Heart Valve Using a Solenoid-Actuated Apparatus

  • Lee, Hwan-Sung;Hwang, Sung-Won;Katsuyuki Yamamoto
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1339-1348
    • /
    • 2003
  • Several factors, including peak dp/dt of the ventricular pressure and maximum closing velocity of leaflet have been studied as indices of the cavitation threshold. In the present study, just before closing velocity of the leaflet has been studied as indices of the cavitation threshold, and cavitation erosion on the surface of a mechanical valve was examined by focusing on squeeze flow and the water hammer phenomenon during the closing period of the valve. A simple solenoid-actuated test device that can directly control the valve closing velocity was developed, and opening-closing tests of 3,000 and 40,000 cycles were performed at various closing velocities. There was a closing velocity threshold to occur erosion pitting of valve surface, and its value was about 0.4 m/s in this study. Cavitation-induced erosion pits were observed only in regions where squeeze flow occurred immediately before valve closure On the other hand, the number of the pits was found to be closely related to an area of water hammer-induced pressure wave below the critical pressure defined by water vapor pressure. Therefore, it was concluded that cavitation is initiated and augmented by the two pressure drops due to squeeze flow and water hammer phenomenon, respectively.

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Design of a Cylinder Valve Solenoid for a CNG Vehicle using Electromagnetic Field Analysis (전자기장 해석을 이용한 CNG 차량 용기용 밸브 솔레노이드의 설계)

  • Lee, Hyo-Ryeol;Ahn, Jung-Hwan;Shin, Jin-Oh;Kim, Hwa-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Growing concerns regarding environmental pollution have increased the demand for green vehicles. Green vehicles include electric vehicles, compressed natural gas vehicles, fuel cell vehicles, and vehicles running on fuels such as bio diesel or an ethanol blend. CNG vehicles are equipped with a cylinder valve installed in a high-pressure vessel to control the CNG flow. For this purpose, the optimum design of cylinder valve solenoid is necessary to secure at driving a CNG vehicle. In this study, electromagnetic field analysis to ensure the reliable operation of the solenoid was conducted by using a Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique according to distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and the measurement results. From the results, the error of attraction force was found to be 2.85 N to 6.5 N under the testing conditions.

Nonlinear analysis of a pneumatic actuation system by digital simulation (전산모사에 의한 공압구동장치의 비선형 해석)

  • 조택동;신효필;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1104-1109
    • /
    • 1991
  • Recently, Pneumatic Actuation System (PAS) has been used increasingly as a high performance fin-control servo actuation systems because of the special advantages of pneumatic units: primarily their low cost, small size, light weight, and tolerance to broad temperature extremes. In this study, a nonlinear model of PAS is derived through the detailed analysis of the major components in the typical system. The model includes nonlinear flow-pressure relationships of the flow through the solenoid valve openings and orifices, PWM algorithm for driving two solenoid valves as a closed-center 3-way valve for minimum gas consumption, solenoid valve dynamics, saturation, and friction. Simulation results are compared with the experimental ones for square and sinusoidal inputs to see the validity of the model. Independent of the shape and magnitude of the input signals, both results are in good agreements with minor difference.

  • PDF

A Study on the Analysis of Hydraulic Circuit for First Pressure Control of Automatic Transmission KICK DOWN System (자동변속기 KICK DOWN 시스템의 1차 압력 제어를 위한 유압 회로 해석에 관한 연구)

  • 김대중;송창섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.171-179
    • /
    • 1991
  • This paper refers to the results of a study on the usefulness of simulation techniques based on both modeling and experiments of KICK DOWN pressure control circuit using an duty solenoid valve controlled by pulse width modulation for an automatic transmission. In this study, dynamic characteristics of solenoid valve plunger and first pressure are verified. Besides, this paper shows the design data for improvement of feeling in changing of gear by means of simulation according to varying the size of jet orifice and temperature of automatic transmission fluid, which are the important variables of the first pressure.

  • PDF

Verification of Control Algorithm for Removing Oil Contaminant Factor from Proportional Pressure Control Valve (전자식 비례 압력제어밸브 내 오일 오염 입자 제거 제어 알고리즘 검증)

  • Cheon, Su Hwan;Park, Jin Kam;Jang, Kyoung Je;Sim, Sung Bo;Jang, Min Ho;Lee, Jin Woong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • An electro proportional pressure control valve is mainly used to control the clutch of an agricultural tractor's automatic transmission. During transmission, the operating, hydraulic oil is mix with many kinds of contaminants. The contaminants can be trapped between the valve body and spool of the proportional pressure control valve leading to abnormal operating conditions and finally critical damage to the transmission hydraulic system. The present study aimed to verify the valve control algorithm as a basic study of developing control logic that removes contaminants between the spool and the body of the proportional pressure control valve. To develop the algorithm, MATLAB/SIMULINK was used. PWM method was used to control the applied solenoid coil current. The effectiveness of the algorithm was verified by comparing the actual pressure of the normal valve with the actual pressure of the abnormal valve. Based on the present study findings, when the algorithm was applied, the response of the valve pressure according to the current became stable and oil contaminated particles were removed. In the future study, the control algorithm will be optimized for the stability of the proportional pressure reducing valve, and it will be verified in consideration with the driving of the clutch.