• Title/Summary/Keyword: Pressure Back Flow

Search Result 255, Processing Time 0.026 seconds

Transient simulation and experiment validation on the opening and closing process of a ball valve

  • Han, Yong;Zhou, Ling;Bai, Ling;Xue, Peng;Lv, Wanning;Shi, Weidong;Huang, Gaoyang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1674-1685
    • /
    • 2022
  • The ball valve is an important device in the pipeline transportation system of nuclear power plants. Its operational stability and safety directly affect the normal working of nuclear power plants. In this study, the transient numerical simulation of the opening and closing process of a ball valve was conducted on the basis of the flow interruption capability experiment of the ball valve by using the moving mesh method and inlet and outlet variable boundary conditions. The flow rate and pressure difference with time of the opening and closing process of the ball valve were studied. The internal flow characteristics of the ball valve under different relative openings were analyzed in conjunction with the typical back-step flow structure. Results show that the transient numerical results agree well with the experimental results. The internal flow characteristics of the ball valve are similar at the same opening during opening and closing process. At small opening, the spool and outlet channels easily form a back-step flow structure. The disappearance and generation of backflow vortices during opening and closing occur at 85% opening and 75% opening, respectively. With the decrease in opening degree, the difference in vortex core area in the flow channel of the ball valve spool in the opening and closing process gradually appears. The research results provide some reference value for the design and optimization of ball valves.

Characteristics of the Air Flow around Square Prism (정사각 기둥주위의 공기흐름 특성에 관한 연구)

  • Lee, Kang-Ju;Kim, Seong-Cheon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.1
    • /
    • pp.42-52
    • /
    • 1987
  • Experimental investigation on the characteristics of the air flow around a square prism located in a uniform flow with various angles of attack was carried out. Experimental results were obtained for the angle of attack from 0 .deg. to 45 .deg. and for Reynolds No. from $2.6{\times}^4$to $12.8^4$. Seperation and reattachment was occurred on the forward face (face AB). Reattachment phenomenon was not developed in the range of attack angle lower 13 .deg. . But, for the range, 13 .deg. .approx. 35 .deg. , the reattachment developed and its position was moved forward the angle of attack increases. Pressure distributions on the reattachment face has a maxium at the reattachment point and a minimum at the separation point. Pressurea on two back faces are nearly symmetric in spite of the changes of the angle of attack and are influenced by the turbulence in rearward flow field.

  • PDF

The Effect of Upstream Disturbances on the Performance of Swing Check Valves (상류측 교란요소가 스윙형 역지밸브의 성능에 미치는 영향)

  • Song, Seok-Yoon;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.41-48
    • /
    • 2007
  • The effect of the upstream flow conditions on the disc stability of the swing check valves was investigated at various upstream flow disturbance sources and distances from the tested check valves. The experimental loop was designed and installed to measure the disc positions, disc back stop load, and differential pressure at flow velocities lot 3 inch and 6 inch swing check valves. The selected disturbance sources are elbow and globe valve. The effect of the disc fluctuation is different depending on the type of disturbance and the distance between the disturbance and the check valve. Disturbances generated by elbow and globe valve located upstream from check valve create greater and more violent disc motion than uniform flow.

A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve (전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구)

  • 김고도;김수태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

Numerical Prediction of Flow Field in a Hard Disk Drive (하드 디스크 드라이브 내부의 유동장에 관한 수치적 연구)

  • Lee, Jae-Heon;Back, Y.R.;Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.206-214
    • /
    • 1991
  • Flow field in a hard disk drive has been predicted numerically. Theoretical model was constructed based on a commercially available hard disk drive with 40 Mega byte capacity. Since the gap between disk tip and shroud is not homogeneous in real hard disk drive, three kinds of gap size have been tested as computational model. The discussion has been made on the circumferential velocity, radial velocity, and pressure fields. As a result, the average shear stress on the disk surface was reduced as the gap size decreased. This means that the shroud should be designed compactly to reduce power consumption of the spindle motor.

  • PDF

Effect of Periodic $N_2$-back-flushing in Paper wastewater Treatment using Carbon Ceramic Ultrafiltration and Microfiltration Membranes (탄소계 세라믹 한외 및 정밀 여과막으로 제지폐수 처리시 주기적 질소 역세척의 효과)

  • 황현정;박진용
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.8-20
    • /
    • 2002
  • In this study using $N_2$-back flushing, which wwas not the general back-flushing method of membranes, the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes. We could in vestigate effects of $N_2$-back flushing period, transmembrane pressure (TMP)and flow rate and find optimal operating conditions. The $N_2$-back flushing time (BT) was fixed at 40 sec, filtration times (FT) were changed in 4~32 min, TNP in $1.0~3.0kg_f/cm^2$ the flow celocities in 0.53~1.09cm/s. The optimal conditions were discussed in the viewpoints of dimensionless permeate flux ($J/J_0$), toal permeate volume ($V_T$) and resistance of membrane fouling ($R_f$). Optimal back-flushing period was BT/FT=0.167 (FT=8 min ), in which more $V_T$ was obtained than that in BT/FT=0.083 (FT=4 min) which was the most friquent back-flushing condition. Then rising TMP should increase the driving force, and more $V_T$ could be accumulated. And rising flow rate should decrease membrane fouling increase permeate flux, and more $V_T$could be produced. Average rejection rates of pollutants were higher than 95% for turbidity and 45~83% for $COD_{Cr}$, but rejection rates of total dissolved solid (TDS) were lower than 10%.

Changes in Physiological Responses by the Pressure of Non-Elastic Corset (비신축성 코르셋의 의복압으로 인한 생리적 반응의 변화)

  • Na, Young-Joo;Kim, Yang-Hee
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.943-951
    • /
    • 2011
  • The purpose of this study is to analyze the physiological effects of non-elastic corset on women's health and pain through measuring the clothing pressure, subjective pressure sensation, blood velocity and metabolism. 5 women in their twenties were picked as our subjects, their average size being 85cm at bust girth, 69 cm at waist girth. With the subjects each wearing a corset, we are testing in artificial environment with a treadmill according to the planned exercise procedures. The average pressure of the corset is 0.938 kPa (maximum 3.006 kPa at 45 degree front bowing), which is 10.2 times higher than the control group, averaging from 9.3 times higher at resting, 11.4 times at walking, 11.1 times at running. The effect of corset pressure on the physiological responses of the body is increased more when exercise than when resting. Clothing pressure increased in the order of the postures: sitting > standing with 45 degree bowing > standing. They experienced a high level of tighten discomfort of 5.6 in the scale of 1.0 to 7.0 due to the high pressure of the corset when resting, after intense exercise the level increased to 6.0, while without corset the level increased 1.7 to 2.2. With corset on, the blood circulation did not increase even though when the body exercised and blood flow became unbalanced making great gaps between both at the right and left finger tips. Perspiration of chest and back decreased 37.3% when wearing corset; 27.5% at resting, 56.7% at walking, 25.8% at running, and 39.0% at recovery. With corset on oxygen consume and metabolism increased 9.0%, 7.9%, respectively, which means the corset makes the body uncomfortable. Lung volume exchange VE decreased almost 4.1~7.3% with corset on and $VCO_2/VO_2$, RER and total volume in lung, VT also decreased too, which means the digestion of stomach and lung function are inhibited due to the high corset pressure.

Flow Characteristics inside a Throttle Valve Used to Control the Intake Air Flow in Engines (엔진의 흡기 공기량 조절용 스로틀 밸브에서의 유동 특성)

  • Kim, Sung-Cho;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.91-98
    • /
    • 1999
  • This paper describes the air flow characteristics inside the throttle valve. Tow-dimensional steady incompressible Navier-Strokes equation are solved numerically with embedding the conceopt of the artificial compressibility and adopting the Baldwin-Lomax turbulence model. With varying the valve opening angles(the Reynolds number )such as 15$^{\circ}$(5000) , 45$^{\circ}$(3000) , 75$^{\circ}$(7000) and 90$^{\circ}$(10000), respectively. tow cases, with a valve shaft and without one, are analysed. The pressure loss between the entrance and exit is severe at 15$^{\circ}$, 100 times as larger as that of 90$^{\circ}$ case, which also depends much on the existece of the valve shaft. The counter rotating vortices are formed over the valve plate with the shaft at only 75$^{\circ}$. They are smally and very large scale in front and back of the valve shaft , respectively. The velocity profiles of 15$^{\circ}$ and 90$^{\circ}$ at the exit are almost symmetric to the horizontal center line, however, the symmetricity is no longer maintained at 45$^{\circ}$ and 75$^{\circ}$ , and in addition, the flow at 75$^{\circ}$ is enforced a lot below center line. The pressure distribution on the walls is largely changed near the valve shaft, and its magnitude becomes great as the valve angle decreases.

  • PDF

A Study on Analysis of Polymer Extruder Process Using Finite Element Method (유한요소법을 이용한 폴리머 압출 공정해석에 관한 연구)

  • Ye Youngsoo;Kim Hongbum;Lee Jaewook;Kim Naksoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.145-155
    • /
    • 2005
  • In this study, a finite element method program code which can be accomodate boundary conditions on the complex surfaces has been developed to simulate polymer extruder processes. The analysis method includes the fractional 4-step method for efficient computation time and compact usage of memory storage to solve the velocities and the pressure values from the Navier-Stokes equation. By using the developed program which was verified with simple Poiseuille flow mixture phenomena in single-and twin-screw extruder are analyzed. It is concluded that the proposed method resulte Poiseuille Poiseuille d in fair agreement with the exact solution of simple flow and the back flow near the entrance happens in single-screw model. It is identified that the location and values of maximum pressure in the twin screw extruder model. It is expected that the Velocity field found can be used to predict the degree of mixture in the extruder barrel.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.