• 제목/요약/키워드: Press-over

검색결과 1,322건 처리시간 0.033초

New Multi-Function Sizing Centre (MFC)

  • Rundel, Albert;Rauch, Peter
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.745-746
    • /
    • 2006
  • This lecture introduces new press, adapter and control concepts to size multi-level sintered components. The essential thing here is that the advantages of the multi-plate technology have been applied to the sizing adapter concept. Thus, the new concept meets the demands for a modern P/M manufacture and offers sufficient potential to size any future, complex sintered components such as synchronizer hubs, oil pump wheels and VCT parts with highest precision. Furthermore, it outlines a new flexible concept for the parts transfer, including feeding, orientation and lubrication while responding to the high demands on process stability and short change-over times.

  • PDF

PC소재의 선형 패턴 제작에 관한 연구 (A study on Linear Pattern Fabrication of Plate-type PC)

  • 정유나;이은경;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF

유기성 슬러지 반복 탈수에 의한 필터프레스 여과포 오염 특성 분석 및 초음파 세척 적용 평가 (Analysis of contamination characteristics of filter cloth in filter press by repeated dehydration of organic sludge and evaluation of ultrasonic cleaning application)

  • 김은주;정철진;김경우;송태규;한성국
    • 유기물자원화
    • /
    • 제32권2호
    • /
    • pp.15-25
    • /
    • 2024
  • 본 연구에서는 하수슬러지 필터프레스 공정에서 발생하는 오염 여과포에 대하여 가압수 및 초음파 세척에 대한 재생효율을 평가하였다. 이를 위하여 3톤 규모 하수슬러지 수열탄화물 처리 필터프레스로부터 오염된 여과포를 채취하였다. 먼저, 필터프레스 여과포의 오염 특성을 평가하였다. 오염 여과포의 위치에 따른 공기투과도와 단위질량을 측정하였으며, 새 여과포 측정값과 비교하였다. 다음으로 오염 여과포 전체 면적에 대하여 공기투과도 및 단위질량 분포를 지도화하여 오염 특성을 평가하였다. 마지막으로 오염 여과포를 대상으로 3 bar의 압력 세정 및 34, 76, 120, 168 kHz 주파수의 초음파 세척을 수행하였다. 이때, 여과포의 기공 오염 정도를 3단계로 나누어 세척효율을 평가하였다. 여과포 오염 비교 결과, 기공 오염은 여과물질이 지속적으로 투입, 압착되는 여과포 하부와 양측면 위주로 발생하였으며, 표면 오염은 전체면적에 걸쳐 고르게 나타났다. 가압 세척 결과, 공기투과도는 1.3-3.1%p 증가하였으며, 오염물질은 2.7-4.4% 제거되었다. 초음파 세척결과, 공기투과도는 12.5-61.5%p 증가하였으며 오염물질은 2.7-29.2% 제거되었다. 초음파 세척에서 주파수가 낮을수록 공기투과도 재생율과 오염물질 제거율이 우수하였다. 여과포의 기공 오염 정도가 클수록 초음파 세척 후 공기투과도 향상 및 오염물질 제거 효과가 우수하였다.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

Numerical study of wind profiles over simplified water waves

  • Cao, Shuyang;Zhang, Enzhen;Sun, Liming;Cao, Jinxin
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.289-309
    • /
    • 2015
  • Vertical profiles of mean and fluctuating wind velocities over water waves were studied, by performing Large-Eddy Simulations (LES) on a fully developed turbulent boundary layer over simplified water waves. The water waves were simplified to two-dimensional, periodic and non-evolving. Different wave steepness defined by $a/{\lambda}$ (a : wave amplitude; ${\lambda}$ : wavelength) and wave age defined by $c/U_b$ (c: phase velocity of the wave; $U_b$ : bulk velocity of the air) were considered, in order to elaborate the characteristics of mean and fluctuating wind profiles. Results shows that, compared to a static wave, a moving wave plays a lesser aerodynamic role as roughness as it moves downstream slower or a little faster than air, and plays more aerodynamic roles when it moves downstream much faster than air or moves in the opposite direction to air. The changes of gradient height, power law index, roughness length and friction velocity with wave age and wave amplitude are presented, which shed light on the wind characteristics over real sea surfaces for wind engineering applications.

Study on the micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modeling system

  • Li, Lei;Zhang, Li-Jie;Zhang, Ning;Hu, Fei;Jiang, Yin;Xuan, Chun-Yi;Jiang, Wei-Mei
    • Wind and Structures
    • /
    • 제13권6호
    • /
    • pp.519-528
    • /
    • 2010
  • A meteorological model, RAMS, and a commercial computational fluid dynamics (CFD) model, FLUENT are combined as a one-way off-line nested modeling system, namely, RAMS/FLUENT system. The system is experimentally applied in the wind simulation over a complex terrain, with which numerical simulations of wind field over Foyeding weather station located in the northwest mountainous area of Beijing metropolis are performed. The results show that the method of combining a meteorological model and a CFD model as a modeling system is reasonable. In RAMS/FLUENT system, more realistic boundary conditions are provided for FLUENT rather than idealized vertical wind profiles, and the finite volume method (FVM) of FLUENT ensures the capability of the modeling system on describing complex terrain in the simulation. Thus, RAMS/FLUENT can provide fine-scale realistic wind data over complex terrains.

Automated CFD analysis for multiple directions of wind flow over terrain

  • Morvan, Herve P.;Stangroom, Paul;Wright, Nigel G.
    • Wind and Structures
    • /
    • 제10권2호
    • /
    • pp.99-119
    • /
    • 2007
  • Estimations of wind flow over terrain are often needed for applications such as pollutant dispersion, transport safety or wind farm location. Whilst field studies offer very detailed information regarding the wind potential over a small region, the cost of instrumenting a natural fetch alone is prohibitive. Wind tunnels offer one alternative although wind tunnel simulations can suffer from scale effects and high costs as well. Computational Fluid Dynamics (CFD) offers a second alternative which is increasingly seen as a viable one by wind engineers. There are two issues associated with CFD however, that of accuracy of the predictions and set-up and simulation times. This paper aims to address the two issues by demonstrating, by way of an investigation of wind potential for the Askervein Hill, that a good level of accuracy can be obtained with CFD (10% for the speed up ratio) and that it is possible to automate the simulations in order to compute a full wind rose efficiently. The paper shows how a combination of script and session files can be written to drive and automate CFD simulations based on commercial software. It proposes a general methodology for the automation of CFD applied to the computation of wind flow over a region of interest.