DOI QR코드

DOI QR Code

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong (College of Civil Engineering, Shanghai Normal University) ;
  • Cao, Shuyang (Department of Bridge Engineering Tongji University) ;
  • Ge, Yaojun (Department of Bridge Engineering Tongji University)
  • Received : 2013.08.16
  • Accepted : 2014.07.06
  • Published : 2014.08.25

Abstract

The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Bitsuamlak, G.T., Stathopoulos, T. and Bedard, C. (2004), "Numerical evaluation of wind flow over complex terrain: review", J. Aerospace Eng., 17(4), 135-145. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(135)
  2. Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
  3. Cao, S. and Tamura, T. (2006), "Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill", J. Wind Eng. Ind. Aerod., 94(1), 1-19. https://doi.org/10.1016/j.jweia.2005.10.001
  4. Cao, S. and Tamura, T. (2007), "Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change", J. Wind Eng. Ind. Aerod., 95(8), 679-695. https://doi.org/10.1016/j.jweia.2007.01.002
  5. Cao, S., Wang, T., Ge, Y. and Tamura, Y. (2012), "Numerical study on turbulent boundary layers over two-dimensional hills - effects of surface roughness and slope", J. Wind Eng. Ind. Aerod., 104-106, 342-349. https://doi.org/10.1016/j.jweia.2012.02.022
  6. DeGraaff, D.B. and Eaton, J.K. (2000), "Reynolds-number scaling of the flat-plate turbulent boundary layer", J. Fluid Mech., 422, 319-346. https://doi.org/10.1017/S0022112000001713
  7. Finnigan, J.J. (1988), Air flow over complex terrain, (Eds. Steffen, W.L. and Denmead, O.T.), Flow and Transport in the Natural Environment: Advances and Applications, Springer-Verlag, Heidelberg.
  8. Gong, W., Taylor, P.A. and Dornbrack, A. (1996), "Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves", J. Fluid Mech., 312, 1-37. https://doi.org/10.1017/S0022112096001905
  9. Henn, D.S. and Sykes, R.I. (1999), "Large-eddy simulation of flow over wavy surfaces", J. Fluid Mech., 383, 75-112. https://doi.org/10.1017/S0022112098003723
  10. Hunt, J.C.R., Leibovich, S. and Richards, K.J. (1988), "Turbulent shear flow over low hills", Q. J. Roy. Meteor. Soc., 114(484), 1435-1470. https://doi.org/10.1002/qj.49711448405
  11. Ishihara, T. and Hibi, K. (2002), "Numerical study of turbulent wake flow behind a three-dimensional steep hill", Wind Struct., 5(2-4), 317-328. https://doi.org/10.12989/was.2002.5.2_3_4.317
  12. Jackson, P.S. and Hunt, J.C.R. (1975), "Turbulent wind flow over a low hill", Q. J. Roy. Meteor. Soc., 101(430), 929-955. https://doi.org/10.1002/qj.49710143015
  13. Kataoka, H. (2008), "Numerical simulations of a wind-induced vibrating square cylinder within turbulent boundary layer", J. Wind Eng. Ind. Aerod., 96(10-11), 1985-1997. https://doi.org/10.1016/j.jweia.2008.02.061
  14. Kataoka, H. and Mizuno, M. (2002), "Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence", Wind Struct., 5(2-4), 379-392. https://doi.org/10.12989/was.2002.5.2_3_4.379
  15. Kondo, K., Murakami, S. and Mochida, A. (1997), "Generation of velocity fluctuations for inflow boundary condition of LES", J. Wind Eng. Ind. Aerod., 67-68, 51-64. https://doi.org/10.1016/S0167-6105(97)00062-7
  16. Lun, Y.F., Mochida, A., Murakami, S., Yoshino, H. and Shirasaw, T. (2003), "Numerical simulation of flow over topographic features by revised k-$\varepsilon$ models", J. Wind Eng. Ind. Aerod., 91(1-2), 231-245. https://doi.org/10.1016/S0167-6105(02)00348-3
  17. Mason, P.J. and King, J.C. (1985), "Measurements and predictions of flow and turbulence over an isolated hill of moderate slope", Q. J. Roy. Meteor. Soc., 111(468), 617-640. https://doi.org/10.1002/qj.49711146818
  18. Miller, C.A. and Davenport, A.G. (1998), "Guidelines for the calculation of wind speed-ups in complex terrain", J. Wind Eng. Ind. Aerod., 74-76, 189-197. https://doi.org/10.1016/S0167-6105(98)00016-6
  19. Neff, D.E. and Meroney, R.N. (1998), "Wind-tunnel modeling of hill and vegetation influence on wind power availability", J. Wind Eng. Ind. Aerod., 74-76, 335-343. https://doi.org/10.1016/S0167-6105(98)00030-0
  20. Ngo, T.T. and Letchford, C.W. (2009), "Experimental study of topographic effects on gust wind speed", J. Wind Eng. Ind. Aerod., 97(9-10), 426-438. https://doi.org/10.1016/j.jweia.2009.06.013
  21. Tamura, T., Cao, S. and Okuno, A. (2007), "LES study of turbulent boundary layer over a smooth and a rough 2D hill model", Flow. Turbul. Combust., 79(4),405-432. https://doi.org/10.1007/s10494-007-9106-2
  22. Wang, T., Cao, S. and Ge, Y. (2013), "Generation of inflow turbulence using the local differential quadrature method", J. Wind Eng. Ind. Aerod., 122, 96-104. https://doi.org/10.1016/j.jweia.2013.06.004

Cited by

  1. A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD) vol.20, pp.4, 2015, https://doi.org/10.12989/was.2015.20.4.565
  2. Numerical simulations of mountain winds in an alpine valley vol.24, pp.6, 2017, https://doi.org/10.12989/was.2017.24.6.565