• 제목/요약/키워드: two-dimensional hill

검색결과 31건 처리시간 0.026초

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

언덕지형을 지나는 유동에 관한 연구 (Wind Flow over Hilly Terrain)

  • 임희창;김현구;이정묵;경남호
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF

두 개의 3차원 지형물 주위의 성층 유동 해석 - 주 유동방향으로 정렬된 경우 - (Numerical Study of Density-stratified Flow Past Two 3D Hills - Aligned in Tandem -)

  • 최춘범;양경수
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1218-1227
    • /
    • 2006
  • In this paper a parametric study using an immersed boundary method has been carried out to investigate the effects of stable density stratification on the wakes past two identical three-dimensional hills aligned in tandem. The Reynolds number based on the uniform inlet velocity and twice the hill height was fixed at Re=300 while the Froude number based on the inlet velocity and the hill height was retained at Fr=0.2. Neutral flow without density stratification was also computed for comparison. Under a strong stratification, vertical motion of fluid particles over the three-dimensional hills is suppressed and the wake structures behind the hills become planar. Depending on the distance between the two hills, the flow pattern of each wake is significantly affected by the stratification. There is a critical hill distance at which flow characteristics drastically change. Qualitative and quantitative features of the wake interaction are reported.

언덕지형을 지나는 유동의 수치해석적 연구 (Numerical Study on the Wind Flow Over Hilly Terrain)

  • 김현구;이정묵;경남호
    • 한국대기환경학회지
    • /
    • 제13권1호
    • /
    • pp.65-77
    • /
    • 1997
  • A theoretical and numerical investigation on the boundary-layer flow over a two- or three-dimensional hill is presented. The numerical model is based on the finite volume method with boundary-fitted coordinates. The k-$\varepsilon$ turbulence model with modified wall function and the low-Reynolds-number model are employed. The hypothesis of Reynolds number independency for the atmospheric boundary-layer flow over aerodynamically rough terrain is confirmed by the numerical simulation. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the wind-tunnel experiments on the flow over a hill show good agreement. The linear theory provides generally good prediction of speed-up characteristics for the gentle-sloped hills. The flow separation occurs in the hill slope of 0.5 and the measured reattachment points are compared with the numerical prediction. It is found that the k- $\varepsilon$ turbulence model is reasonably accurate in predicting the attached flow, while the low- Reynolds-number model is more suitable to simulate the separated flows.ows.

  • PDF

Wind flow over sinusoidal hilly obstacles located in a uniform flow

  • Lee, Sang-Joon;Lim, Hee-Chang;Park, Ki-Chul
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.515-526
    • /
    • 2002
  • The wind flow over two-dimensional sinusoidal hilly obstacles with slope (the ratio of height to half width) of 0.5 has been investigated experimentally and numerically. Experiments for single and double sinusoidal hill models were carried out in a subsonic wind tunnel. The mean velocity profiles, turbulence statistics, and surface pressure distributions were measured at the Reynolds number based on the obstacle height(h=40 mm) of $2.6{\times}10^4$. The reattachment points behind the obstacles were determined using the oil-ink dot and tuft methods. The smoke-wire method was employed to visualize the flow structure qualitatively. The finite-volume-method and the SIMPLE-C algorithm with an orthogonal body-fitted grid were used for numerical simulation. Comparison of mean velocity profiles between the experiments and the numerical simulation shows a good agreement except for the separation region, however, the surface pressure data show almost similar distributions.

Numerical simulation of flow past 2D hill and valley

  • Chung, Jaeyong;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2004
  • Numerical simulation of flow past two-dimensional hill and valley is presented. Application of three turbulence models - the standard and modified (Kato-Launder) $k-{\varepsilon}$ models and standard $k-{\omega}$ model - is discussed. The computational methodology is briefly described. The mean velocity and turbulence intensity profiles, obtained from numerical simulations of flow past the hill, are compared with the experimental data acquired in a boundary-layer wind tunnel at Colorado State University. The mean velocity, turbulence kinetic energy and Reynolds shear stress profiles from numerical simulations of flow past the valley are compared with published experimental data. Overall, the results of simulations employing the standard $k-{\varepsilon}$ model were found to be in a better agreement with the experimental data than those obtained using the modified $k-{\varepsilon}$ model and the $k-{\omega}$ model.

Utility of Multidetector Computed Tomographic Angiography as an Alternative to Transesophageal Echocardiogram for Preoperative Transcatheter Mitral Valve Repair Planning

  • Craig Basman;Caroline Ong;Tikal Kansara;Zain Kassam;Caleb Wutawunashe;Jennifer Conroy;Arber Kodra;Biana Trost;Priti Mehla;Luigi Pirelli;Jacob Scheinerman;Varinder P Singh;Chad A Kliger
    • Journal of Cardiovascular Imaging
    • /
    • 제31권1호
    • /
    • pp.18-23
    • /
    • 2023
  • BACKGROUND: Three-dimensional (3D) transesophageal echocardiogram (TEE) is the gold standard for the diagnosis of degenerative mitral regurgitation (dMR) and preoperative planning for transcatheter mitral valve repair (TMVr). TEE is an invasive modality requiring anesthesia and esophageal intubation. The severe acute respiratory syndrome coronavirus 2 pandemic has limited the number of elective invasive procedures. Multi-detector computed tomographic angiography (MDCT) provides high-resolution images and 3D reconstructions to assess complex mitral anatomy. We hypothesized that MDCT would reveal similar information to TEE relevant to TMVr, thus deferring the need for a preoperative TEE in certain situations like during a pandemic. METHODS: We retrospectively analyzed data on patients who underwent or were evaluated for TMVr for dMR with preoperative MDCT and TEE between 2017 and 2019. Two TEE and 2 MDCT readers, blinded to patient outcome, analyzed: leaflet pathology (flail, degenerative, mixed), leaflet location, mitral valve area (MVA), flail width/gap, anterior-posterior (AP) and commissural diameters, posterior leaflet length, leaflet thickness, presence of mitral valve cleft and degree of mitral annular calcification (MAC). RESULTS: A total of 22 (out of 87) patients had preoperative MDCT. MDCT correctly identified the leaflet pathology in 77% (17/22), flail leaflet in 91% (10/11), MAC degree in 91% (10/11) and the dysfunctional leaflet location in 95% (21/22) of patients. There were no differences in the measurements for MVA, flail width, commissural or AP diameter, posterior leaflet length, and leaflet thickness. MDCT overestimated the measurements of flail gap. CONCLUSIONS: For preoperative TMVr planning, MDCT provided similar measurements to TEE in our study.

평형해법을 이용한 트렁크 리드의 단면해석과 3차원 형상합성 (The Sectional Analysis of Trunk-lid using the Equilibrium Approach and Three-Dimensional Shape Composition)

  • 정동원
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.66-71
    • /
    • 2001
  • A sectional analysis of trunk-lid carried out by using the equilibrium approach based on the force balance together with geometric relations and plasticity theory. In computing a force balance equation, it is required to define a geometric curve approximating the shape of sheet metal at any step of deformation from the interaction between the die and the deformed sheet. The trunk-lid panel material is assumed to possess normal anisotropy and to obey Hill's new yield criterion. Deformation of each section of trunk-lid panel is simulated and composed to get the three-dimensional shape by using CAD technique. It was shown that the three-dimensional shape composition of the two-dimensional analysis.

  • PDF