• Title/Summary/Keyword: Press-over

Search Result 1,335, Processing Time 0.025 seconds

A Study on Main Issues of the Constitutional Petition against "the Newspaper Law" (신문법 위헌소송의 주요 쟁점에 관한 연구)

  • Lee, Yong-Sung
    • Korean journal of communication and information
    • /
    • v.33
    • /
    • pp.227-251
    • /
    • 2006
  • The Law Ensuring the Freedom and the Functions of Liability of the Newspapers ("The Newspaper Law") which was passed in the National Assembly on January 1, 2005 is considered as a tremendous setback compared to "the Newspaper Bill" of civil press organizations. Of the two instruments to ensure the editorial freedom, the regulation on the newspaper company ownership share distribution was eliminated and the editorial committee (editorial codes of ethics) became an arbitrary system. That is, the Newspaper Law was criticized as a law of "half-success." However, the Newspaper Law has its own benefit by institutionalizing the establishment of the Korea Commission for the Press, the Press Fund, and the Korea Newspaper Circulation Service for Promoting Newspaper Businesses and by strengthening the criteria to estimate market dominant businesspeople in newspaper market than general markets to ensure the diversity of public opinions. As the Newspaper Law was promulgated, Donga-Ilbo and Chosun-Ilbo submitted the Constitutional Petition against "the Newspaper Law" and the Constitutional Court is expected to give the decision soon. Based on the "Supplements on the Grounds of the Constitutional Petition against the Newspaper Law" ("the Petition"), this paper will examine the main issues of the debates over the Constitutionality of the Newspaper Law.

  • PDF

Experimental study on flow characteristics of downburst-like wind over the 3D hill using the wall jet and the impinging jet models

  • Bowen Yan;Kaiyan Xie;Xu Cheng;Chenyan Ma;Xiao Li;Zhitao Yan
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.141-161
    • /
    • 2024
  • Engineering structures often suffer significant damage in the horizontal outflow region of downburst. The wall jet model, which simplifies the simulation device by only modeling the horizontal outflow region of downburst, has been widely employed to study downburst flow characteristics. However, research on downburst wind fields over hilly terrain using the wall jet model is limited, and the relationship between the downburst wind fields generated by wall jet and impinging jet remains unclear. This study investigates the flow characteristics of downburst-like wind over a 3D ideal hill model using wind tunnel tests with the wall jet and impinging jet models. The effects of hill height, slope, shape, and radial position on the speed-up ratio are examined using the wall jet flow. The results indicate that slope and radial position significantly affect the speed-up ratio, while hill height have a slight impact and shape have a minimal impact. Additionally, this study investigates the wind field characteristics over flat terrain using the impinging jet, and investigated the connection between the impinging jet model and the wall jet. Based on this connection, a comparison of the downburst-like flow characteristics over the same 3D ideal hill using the wall jet and impinging jet models is conducted, which further validates the reliability of the wall jet model for studying downburst flow characteristics over hilly terrain.

Strong wind climatic zones in South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.37-55
    • /
    • 2010
  • In this paper South Africa is divided into strong wind climate zones, which indicate the main sources of annual maximum wind gusts. By the analysis of wind gust data of 94 weather stations, which had continuous climate time series of 10 years or longer, six sources, or strong-wind producing mechanisms, could be identified and zoned accordingly. The two primary causes of strong wind gusts are thunderstorm activity and extratropical low pressure systems, which are associated with the passage of cold fronts over the southern African subcontinent. Over the eastern and central interior of South Africa annual maximum wind gusts are usually caused by thunderstorm gust fronts during summer, while in the western and southern interior extratropical cyclones play the most dominant role. Along the coast and adjacent interior annual extreme gusts are usually caused by extratropical cyclones. Four secondary sources of strong winds are the ridging of the quasi-stationary Atlantic and Indian Ocean high pressure systems over the subcontinent, surface troughs to the west in the interior with strong ridging from the east, convergence from the interior towards isolated low pressure systems or deep coastal low pressure systems, and deep surface troughs on the West Coast.

Performance assessment of RC frame designed using force, displacement & energy based approach

  • Kumbhara, Onkar G.;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.699-714
    • /
    • 2020
  • Force based design (FBD) approach is prevalent in most of the national seismic design codes world over. Direct displacement based design (DDBD) and energy based design (EBD) approaches are relatively new methods of seismic design which claims to be more rational and predictive than the FBD. These three design approaches are conceptually distinct and imparts different strength, stiffness and ductility property to structural members for same plan configuration. In present study behavioural assessment of frame of six storey RC building designed using FBD, DDBD and EBD approaches has been performed. Lateral storey forces distribution, reinforcement design and results of nonlinear performance using static and dynamic methods have been compared. For the three approaches, considerable difference in lateral storey forces distribution and reinforcement design has been observed. Nonlinear pushover analysis and time history analysis results show that in FBD frame plastic deformation is concentrated in the lower storey, in EBD frame large plastic deformation is concentrated in the middle storeys though the inelastic hinges are well distributed over the height and, in DDBD frame plastic deformation is approximately uniform over the height. Overall the six storey frame designed using DDBD approach seems to be more rational than the other two methods.

Pelvic Twist Analysis, PTA (골반 뒤틀림 변위 분석법에 대한 소고)

  • Jo, Jong-Jin;Kim, Sang-Deok
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.5 no.1
    • /
    • pp.135-139
    • /
    • 2004
  • Objectives : The objectives of this report is to introduce PTA. Methods : The examination of the leg length inequality gives us a useful tool for diagnosis of body imbalance. especially pelvic distortion. There are four steps in the process of the leg analysis, according to "The Standard Manual of Chuna Society (2nd ed., Seoul:KCA Press. 2001)". In the last step of the analysis, knee-flexing over $90^{\circ}$, we have often experienced a specific sign that the lower legs are attracted toward one side spontaneously. The authors call it 'Lower Leg Lateral Attraction'. This is a very significant sign that gives us which is the major part between pelvis and the upper parts over sacrum. Thus it is definded as "Pelvic Twist Analysis, PTA" by the authors. With PTA, first, you must check the side of short leg and next, check the side of lateral attraction in lower leg over-flexing. If both sides coincide with each other, then the major part you can correct first is pelvic distortion. If not, you must find another part for primary correction, instead of pelvis. Conclusions : PTA becomes a useful complement to the examination of the leg length inequality.

  • PDF

Running safety of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.207-222
    • /
    • 2020
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train subjected to fluctuating crosswind. To ensure the safe operation in metro lines in mountain cities, running safety of the metro train over the high-pier bridge under crosswind is analyzed in this paper. Firstly, the dynamic model of the wind-train-bridge (WTB) system is built, in which the speed-up effect of crosswind is fully considered. On the basis of time domain analysis, the basic characteristics of the WTB system with high-pier are analyzed. Afterwards, the dynamic responses varies with train speed and wind speed are calculated, and the safety zone of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city is determined. The results indicate that, fluctuating crosswind triggers drastic vibration to the metro train and high-pier bridges, which in turn causes running instability of the train. For this reason, the corresponding safety zone for metro train running on the high-pier is proposed, and the metro traffic on the high-pier bridge should be closed as the mean wind speed of standard height reaches 9 m/s (15.6 m/s for the train).

Analysis of thermal and damage effects over structural modal parameters

  • Ortiz Morales, Fabricio A.;Cury, Alexandre A.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Structural modal parameters i.e. natural frequencies, damping ratios and mode shapes are dynamic features obtained either by measuring the vibration responses of a structure or by means of finite elements models. Over the past two decades, modal parameters have been used to detect damage in structures by observing its variations over time. However, such variations can also be caused by environmental factors such as humidity, wind and, more importantly, temperature. In so doing, the use of modal parameters as damage indicators can be seriously compromised if these effects are not properly tackled. Many researchers around the world have found numerous methods to mitigate the influence of such environmental factors from modal parameters and many advanced damage indicators have been developed and proposed to improve the reliability of structural health monitoring. In this paper, several vibration tests are performed on a simply supported steel beam subjected to different damage scenarios and temperature conditions, aiming to describe the variation in modal parameters due to temperature changes. Moreover, four statistical methodologies are proposed to identify damage. Results show a slightly linear decrease in the modal parameters due to temperature increase, although it is not possible to establish an empirical equation to describe this tendency.

Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings

  • Gholipour, Mohammadreza;Mazloom, Moosa
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.17-34
    • /
    • 2018
  • Tall buildings are categorized as important structures because of the large number of occupants and high construction costs. The choice of competent lateral load resisting systems in tall buildings is of crucial importance. Bracing systems have long been an economic and effective method for resisting lateral loads in steel structures. However, there are some potential adverse aspects to bracing systems such as the limitations they inflict on architectural plans, uplift forces and poor performances in compression. in order to eliminate the mentioned problems and for cost optimization, in this paper, six 20-story steel buildings and frames with different types of bracing, i.e., conventional, mega-scale and buckling-restrained bracing (BRB) were analyzed. Linear and modal push-over analyses were carried out. The results pointed out that Mega-Scale Bracing (MSB) system has significant superiority over the conventional bracing type. The MSB system is 25% more economic. Some other advantages of MSB include: up to 63% less drift ratio, up to 38% better performance in lateral displacement, up to 100% stiffer stories, and about 50% smaller uplift forces. Moreover, MSB equipped with BRB attests even a better seismic behavior in the aforementioned parameters.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.

Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions

  • Sun, De'an;Chen, Liwen;Zhang, Junran;Zhou, Annan
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.669-685
    • /
    • 2015
  • A three-dimensional elastoplastic constitutive model, also known as a UH model (Yao et al. 2009), was developed to describe the stress-strain relationship for normally consolidated and over-consolidated soils. In this paper, an acoustic tensor and discriminator of bifurcation for the UH model are derived for the strain localization of saturated clays under undrained and fully and partially drained conditions. Analytical analysis is performed to illustrate the points of bifurcation for the UH model with different three-dimensional stress paths. Numerical analyses of cubic specimens for the bifurcation of saturated clays under undrained and fully and partially drained conditions are conducted using ABAQUS with the UH model. Analytical and numerical analyses show the similar bifurcation behaviour of overconsolidated clays in three-dimensional stress states and various drainage conditions. The results of analytical and numerical analyses show that (1) the occurrence of bifurcation is dependent on the stress path and drainage condition; and (2) bifurcation can appear in either a strain-hardening or strain-softening regime.