DOI QR코드

DOI QR Code

Experimental study on flow characteristics of downburst-like wind over the 3D hill using the wall jet and the impinging jet models

  • Bowen Yan (Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, School of Civil Engineering, Chongqing University) ;
  • Kaiyan Xie (Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, School of Civil Engineering, Chongqing University) ;
  • Xu Cheng (Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, School of Civil Engineering, Chongqing University) ;
  • Chenyan Ma (Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, School of Civil Engineering, Chongqing University) ;
  • Xiao Li (Department of Civil, Chemical and Environmental Engineering, University of Genoa) ;
  • Zhitao Yan (Chongqing University of Science & technology, School of Civil Engineering and Architecture)
  • Received : 2024.01.24
  • Accepted : 2024.05.22
  • Published : 2024.08.25

Abstract

Engineering structures often suffer significant damage in the horizontal outflow region of downburst. The wall jet model, which simplifies the simulation device by only modeling the horizontal outflow region of downburst, has been widely employed to study downburst flow characteristics. However, research on downburst wind fields over hilly terrain using the wall jet model is limited, and the relationship between the downburst wind fields generated by wall jet and impinging jet remains unclear. This study investigates the flow characteristics of downburst-like wind over a 3D ideal hill model using wind tunnel tests with the wall jet and impinging jet models. The effects of hill height, slope, shape, and radial position on the speed-up ratio are examined using the wall jet flow. The results indicate that slope and radial position significantly affect the speed-up ratio, while hill height have a slight impact and shape have a minimal impact. Additionally, this study investigates the wind field characteristics over flat terrain using the impinging jet, and investigated the connection between the impinging jet model and the wall jet. Based on this connection, a comparison of the downburst-like flow characteristics over the same 3D ideal hill using the wall jet and impinging jet models is conducted, which further validates the reliability of the wall jet model for studying downburst flow characteristics over hilly terrain.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (52221002,52278483), 111 Project of China (B18062), Natural Science Foundation of Chongqing, China (cstc2022ycjh-bgzxm0050), S&T Program of Hebei (225676162GH) and Fundamental Research Funds for the Central Universities (2023CDJQY-030; 2024CDJZCQ-011).

References

  1. Abd-Elaal, E.S., Mills, J.E. and Ma, X. (2014), "Empirical models for predicting unsteady-state downburst wind speeds", J. Wind Eng. Ind. Aerod., 129, 49-63. https://doi.org/10.1016/j.jweia.2014.03.011.
  2. Aboshosha, H., Elawady, A., El Ansary, A. and El Damatty, A. (2016), "Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds", Eng. Struct., 112, 23-46. https://doi.org/10.1016/j.engstruct.2016.01.003.
  3. Abrahamsson, H., Johansson, B. and Lofdahl, L. (1994), "A turbulent plane two-dimensional wall-jet in a quiescent surrounding", Eur. J. Mech. B. Fluids, 13(5), 533-556.
  4. ASCE/SEI 7-16 (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia.
  5. Bakke, P. (1957), "An experimental investigation of a wall jet", J. Fluid Mech., 2(5), 467-472. https://doi.org/10.1017/S0022112057000270.
  6. Bowen, A.J. (2003), "Modelling of strong wind flows over complex terrain at small geometric scales", J. Wind Eng. Ind. Aerod., 91(12-15), 1859-1871. https://doi.org/10.1016/j.jweia.2003.09.029.
  7. Canepa, F., Burlando, M., Romanic, D., Solari, G. and Hangan, H. (2022), "Downburst-like experimental impinging jet measurements at the WindEEE Dome", Sci. Data, 9(1), 243.
  8. Chang, Y.B. and Moretti, P.M. (2002), "Flow-induced vibration of free edges of thin films", J. Fluids Struct., 16(7), 989-1008.
  9. Chay, M.T. and Letchford, C.W. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst-Part A: stationary downburst observations", J. Wind Eng. Ind. Aerod., 90(7), 711-732. https://doi.org/10.1016/S0167-6105(02)00158-7.
  10. Chen, Y., Li, Y., Yao, J., Shen, G., Lou, W., Xu, H. and Guo, Y. (2022), "Experimental study of downburst wind flow over a typical three-dimensional hill", Appl. Sci., 12(6), 3101. https://doi.org/10.3390/app12063101.
  11. Cooper, D., Jackson, D.C., Launder, B.E. and Liao, G.X. (1993), "Impinging jet studies for turbulence model assessment-I. Flow-field experiments", Int. J. Heat Mass Transfer, 36(10), 2675-2684. https://doi.org/10.1016/S0017-9310(05)80204-2.
  12. Elawady, A., Aboshosha, H. and El Damatty, A. (2018), "Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data", Wind Struct., 27(2), 71-88. https://doi.org/10.12989/was.2018.27.2.071.
  13. Eriksson, J.G., Karlsson, R.I. and Persson, J. (1998), "An experimental study of a two-dimensional plane turbulent wall jet", Exp. Fluid., 25(1), 50-60. https://doi.org/10.1007/s003480050207.
  14. Fujita, T.T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/1520-0469(1981)038%3C1511:TADITC%3E2.0.CO;2.
  15. Fujita, T.T. (1985), The Downburst: Microburst and Macroburst: Report of Projects NIMROD and JAWS, Satellite and Mesometeorology Research Project; Dept. of the Geophysical Sciences, University of Chicago.
  16. Fujita, T.T. (1990), "Downbursts: meteorological features and wind field characteristics", J. Wind Eng. Ind. Aerod., 36, 75-86.
  17. Gao, N., Naughton, J. and Ewing, D. (2006), "Measurements of wall shear stress of an offset attaching planar jet with co-flow", In 44th AIAA Aerospace Sciences Meeting and Exhibit, 646.
  18. Glauert, M.B. (1956), "The wall jet", J. Fluid Mech., 1(6), 625-643.
  19. Hadziabdic, M. and Hanjalic, K. (2008), "Vortical structures and heat transfer in a round impinging jet", J. Fluid Mech., 596, 221-260.
  20. Hangan, H., Refan, M., Jubayer, C., Romanic, D., Parvu, D., LoTufo, J. and Costache, A. (2017), "Novel techniques in wind engineering", J. Wind Eng. Ind. Aerod., 171, 12-33.
  21. Hao, J. and Wu, T. (2018), "Downburst-induced transient response of a long-span bridge: A CFD-CSD-based hybrid approach", J. Wind Eng. Ind. Aerod., 179, 273-286.
  22. Hjelmfelt, M.R. (1988), "Structure and life cycle of microburst outflows observed in Colorado", J. Appl. Meteorol. Climatol., 27(8), 900-927. https://doi.org/10.1006/jfls.2002.0456.
  23. Huang, G., Liu, W., Zhou, Q., Yan, Z. and Zuo, D. (2018), "Numerical study for downburst wind and its load on high-rise building", Wind Struct., 27(2), 89-100.
  24. Ibrahim, I., Aboshosha, H. and El Damatty, A. (2020), "Numerical characterization of downburst wind field at WindEEE dome", Wind Struct., 30(3), 231.
  25. Jackson, P.S., Hunt, J.C.R. (1975), "Turbulent wind flow over a low hill", Quarter. J. Royal Meteorol. Soc., 101(430), 929-955.
  26. Jubayer, C., Romanic, D. and Hangan, H. (2019), "Aerodynamic loading of a typical low-rise building for an experimental stationary and non-Gaussian impinging jet", Wind Struct., 28(5), 315.
  27. Junayed, C., Jubayer, C., Parvu, D., Romanic, D. and Hangan, H. (2019), "Flow field dynamics of large-scale experimentally produced downburst flows", J. Wind Eng. Ind. Aerod., 188, 61-79.
  28. Kim, J. and Hangan, H. (2007), "Numerical simulations of impinging jets with application to downbursts", J. Wind Eng. Ind. Aerod., 95(4), 279-298.
  29. Launder, B.E. and Rodi, W. (1979), "The turbulent wall jet", Progress Aeros. Sci., 19, 81-128.
  30. Letchford, C. (1999), "Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet", Proc,. 10th ICWE, Copenhagen, 1999.
  31. Letchford, C.W. and Chay, M.T. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations", J. Wind Eng. Ind. Aerod., 90(7), 733-753.
  32. Li, J., Wang, J., Yang, S., Wang, F. and Zhao, G. (2022), "Wind tunnel investigation on wind characteristics of flat and mountainous terrain", Wind Struct., 35(4), 229-242.
  33. Lin, W.E. and Savory, E. (2006), "Large-scale quasi-steady modelling of a downburst outflow using a slot jet", Wind Struct., 9(6), 419-440.
  34. Lin, W.E., Orf, L.G., Savory, E. and Novacco, C. (2007), "Proposed large-scale modelling of the transient features of a downburst outflow", Wind Struct., 10(4), 315-346.
  35. Lin, W.E., Savory, E., McIntyre, R.P., Vandelaar, C.S. and King, J.P.C. (2012), "The response of an overhead electrical power transmission line to two types of wind forcing", J. Wind Eng. Ind. Aerod., 100(1), 58-69.
  36. Lou, W., Bai, H., Huang, M., Duan, Z. and Bian, R. (2020), "Wind field generation for performance-based structural design of transmission lines in a mountainous area", Wind Struct., 31(2), 165.
  37. Mara, T.G., Hong, H.P., Lee, C.S., Ho, T.C.E. (2016), "Capacity of a transmission tower under downburst wind loading", Wind Struct., 22(1), 65-87.
  38. Mason, M.S., Wood, G.S. and Fletcher, D.F. (2007), "Impinging jet simulation of stationary downburst flow over topography", Wind Struct., 10(5), 437-462.
  39. Mason, M.S., Wood, G.S. and Fletcher, D.F. (2009), "Numerical simulation of downburst winds", J. Wind Eng. Ind. Aerod., 97(11-12), 523-539.
  40. Mason, M.S., Wood, G.S. and Fletcher, D.F. (2010), "Numerical investigation of the influence of topography on simulated downburst wind fields", J. Wind Eng. Ind. Aerod., 98(1), 21-33.
  41. McConville, A.C., Sterling, M. and Baker, C.J. (2009), "The physical simulation of thunderstorm downbursts using an impinging jet", Wind Struct., 12(2), 133.
  42. Oseguera, R.M. and Bowles, R.L. (1988), A Simple, Analytic 3-Dimensional Downburst Model Based on Boundary Layer Stagnation Flow (No. NASA-TM-100632).
  43. Sarkar, P.P., Haan, Jr, F.L., Balaramudu, V. and Sengupta, A. (2006), "Laboratory simulation of tornado and microburst to assess wind loads on buildings", In Structures Congress 2006: Structural Engineering and Public Safety, 1-10.
  44. Schroeder, J.L., Lorsolo, S., Beck, J. and Weiss, C. (2005), "Using mobile research radar to extract hurricane boundary layer wind information", In 10th Americas Conference on Wind Engineering, ACWE 2005.
  45. Selvam, R.P. and Holmes, J.D. (1992), "Numerical simulation of thunderstorm downdrafts", J. Wind Eng. Ind. Aerod., 44(1-3), 2817-2825.
  46. Sengupta, A. and Sarkar, P.P. (2008), "Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds", J. Wind Eng. Ind. Aerod., 96(3), 345-365.
  47. Su, Y., Huang, G., Liu, R. and Zeng, Y. (2021), "Efficient buffeting analysis under non-stationary winds and application to a mountain bridge", Wind Struct., 32(2), 89.
  48. Taylor, P.A., Mason, P.J. and Bradley, E.F. (1987), "Boundary-layer flow over low hills", Bound. Lay. Meteorol., 39(1-2), 107-132.
  49. Tian, Y., Niu, Y., Yang, Q. and Li, B. (2020), "Characteristics of the speeds and pressure drops of physically simulated tornadoes", Eng. Mech., 37(3), 66-76.
  50. Vicroy, D.D. (1991), A Simple, Analytical, Axisymmetric Microburst Model for Downdraft Estimation, National Aeronautics and Space Administration, Langley Research Center.
  51. Wani, A.H., Varma, R.K. and Ahuja, A.K. (2021), "Experimental investigation of wind flow characteristics over hills and escarpments-A review", Wind Struct., 32(4), 393.
  52. Wood, G.S. and Kwok, K.C.S. (1998), "An empirically derived estimate for the mean velocity profile of a thunderstorm downburst", In Proceedings of the 7th Australian Wind Engineering Society Workshop, Auckland.
  53. Wood, G.S., Kwok, K.C., Motteram, N.A. and Fletcher, D.F. (2001), "Physical and numerical modelling of thunderstorm downbursts", J. Wind Eng. Ind. Aerod., 89(6), 535-552.
  54. Wygnanski, I., Katz, Y. and Horev, E. (1992), "On the applicability of various scaling laws to the turbulent wall jet", J. Fluid Mech., 234, 669-690.
  55. Xu, Z. and Hangan, H. (2008), "Scale, boundary and inlet condition effects on impinging jets", J. Wind Eng. Ind. Aerod., 96(12), 2383-2402.
  56. Yan, B., He, Y., Ma, C. and Cheng, X. (2023), "Semiempirical models of speedup effect for downburst wind field over 3-D hills", Atmosphere, 14, 694.
  57. Yan, Z., Zhong, Y., Cheng, X., McIntyre, R.P. and Savory, E. (2018), "A numerical study of a confined turbulent wall jet with an external stream", Wind Struct., 27(2), 101-109.
  58. Zhong, Y., Yan, Z., Li, Y., Luo, J. and Zhang, H. (2021a), "Numerical study on plane and radial wall jets to validate the 2D assumption for an idealized downburst outflow", Adv. Civil Eng., 2021, 1-17.
  59. Zhong, Y., Yan, Z., Li, Y., Yang, X. and Jiang, S. (2021b), "Experimental study on simulation of unsteady downburst outflow in atmospheric boundary layer wind tunnel", J. Experimen. Fluid Mech., 35(6), 58-65. (in Chinese).