• 제목/요약/키워드: Preparative liquid chromatography

검색결과 87건 처리시간 0.024초

Isolation of ginsenosides Rb1, Rb2, Rc Rd, Re, Rf and Rg1 from cinseng root by high performance liquid chromatography

  • Paik, Nam-Ho;Park, Man-Ki;Choi, Kang-Ju;Cho, Yung-Hyun
    • Archives of Pharmacal Research
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 1982
  • Ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf and Rg1 were effectively isolated from ginseng root by preparative liquid chromatography (LC) on two PrepPAK-500/c18 cartridges in series and semipreparative LC on a .mu. Bondapak cabohydrate analysis column, a .mu.Bondapak C18 column or a .mu. Porasil column. The identities of the isolated ginsenosides were confirmed by analytical high-performance liquid chromatography (HPLC) and infrared spectrophotometry. By this method large scale isolation of pure ginsenosides was efficiently accomplished.

  • PDF

Enantioseparation of Racemic 1,1'Binaphthyl-2,2'diamine by Preparative Liquid Chromatography

  • Ryoo, Jae-Jeong;Kwon, Woo-Jeong;Kim, Tae-Hyuk;Lee, Kwang-Pill;Choi, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권9호
    • /
    • pp.1336-1340
    • /
    • 2004
  • The same kind of chiral stationary phase with a commercialized chiral column was used to make preparative chiral columns and was applied to resolve racemic N-acetyl-1-naphthylethylamide (3) by preparative liquid chromatography. An improved chromatographic condition to resolve racemic 3 on the CSP was examined by changing flow rate and kind of the mobile phase and the sample injection volume. The optimized separation conditions were applied to resolve racemic 1,1'-Binaphthyl-2,2'-diamine(4).

New Polyacetylene Compounds from Panax Ginseng C. A. Meyer$^\dag$

  • Shim, Sang-Chul;Chang, Suk-Ku;Hur, Chan-Woo;Kim, Chang-Kew
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.272-275
    • /
    • 1987
  • Two polyacetylene compounds having diyn-ene chromophore were isolated from fresh Korean ginseng roots through solvent fractionation, partition and silica gel column chromatography. The low pressure semi-preparative liquid chromatography and high performance preparative liquid chromatography were used for final separation of polyacetylenic fractions. The chemical structures of these polyacetylenes were determined to be heptadeca-1,8-dien-4,6-diyn-3,10-diol and heptadeca-1,4-dien-6,8-diyn-3,10-diol by UV, FT-IR, $^1H\;NMR,\;^{13}C\;NMR,$ mass spectra and elemental analysis.

Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography

  • Liu, Fang;Ma, Ni;Xia, Fang-Bo;Li, Peng;He, Chengwei;Wu, Zhenqiang;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.105-115
    • /
    • 2019
  • Background: Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods: An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results: The dried PNL powder was immersed in the distilled water at $50^{\circ}C$ for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion: Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.

고속액체(高速液體) chromatography에 의(依)한 Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$의 대량분리(大量分離) (Larqe guantity isolation of Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ in Panax ginseng C.A. Meyer by High Performance Liquid Chromatography)

  • 최진호;김우정;배효원;오성기;대포언길
    • Applied Biological Chemistry
    • /
    • 제23권4호
    • /
    • pp.199-205
    • /
    • 1980
  • 인삼의 유효약리성분으로 밝혀진 saponin중의 각 ginsenosides를 효과적이고 능률적으로 분리하기 위하여 대량분취전용 고속액체 chromatograph인 preparative HPLC의 응용을 검토하였다. 조(粗) saponin획분을 preparative HPLC인 Prep LC/system-500를 사용하여 부분분획을 하고 각 획분에 함유되어 있는 ginsenosides의 조성을 Analytical HPLC로 동정한 후 Semi-preparative HPLC를 사용하여 인삼주성분 saponin을 단리했다. 그 결과 인삼 주성분 saponin인 $ginsenoside-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$은 약 20 mg / 2.0 ml / injection으로 chromatography를 행하여 $300{\sim}400mg/day$로 대량분취가 가능하였다. 따라서 ginsenosides의 약리 및 임상효능 연구에 크게 기여하게 될 것이다.

  • PDF

Transformation of dissolved organic matter in a constructed wetland: A molecular-level composition analysis using pyrolysis-gas chromatography mass spectrometry

  • Park, Jongkwan;Choi, Mijin;Cho, Jaeweon;Chon, Kyongmi
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.390-396
    • /
    • 2018
  • This study investigated the transformation of dissolved organic matter (DOM) in a free-water surface flow constructed wetland. Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) coupled with preparative high-performance liquid chromatography (prep-HPLC) was used to analyze the compositions of biopolymers (polysaccharides, amino sugars, proteins, polyhydroxy aromatics, lipids and lignin) in DOM according to the molecular size at three sampling points of the water flow: inflow, midflow, and outflow. The prep-HPLC results verified the decomposition of DOM through the decrease in the number of peaks from three to one in the chromatograms of the sampling points. The Py-GC/MS results for the degradable peaks indicated that biopolymers relating to polysaccharides and proteins gradually biodegraded with the water flow. On the other hand, the recalcitrant organic fraction (the remaining peak) in the outflow showed a relatively high concentration of aromatic compounds. Therefore, the ecological processes in the constructed wetland caused DOM to become more aromatic and homogeneous. This indicated that the constructed wetland can be an effective buffer area for releasing biochemically stable DOM, which has less influence on biological water quality indicators, e.g., biochemical oxygen demand, into an aquatic ecosystem.

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • 제21권2호
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.

Efficient Isolation of Dihydrophaseic acid 3'-O-β-D-Glucopyranoside from Nelumbo nucifera Seeds Using High-performance Countercurrent Chromatography and Reverse-phased High-performance Liquid Chromatography

  • Rho, Taewoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • 제24권4호
    • /
    • pp.288-292
    • /
    • 2018
  • High-performance countercurrent chromatography (HPCCC) coupled with reversed-phase highperformance liquid chromatography (RP-HPLC) method was developed to isolate dihydrophaseic acid 3'-O-${\beta}$-D-glucopyranoside (DHPAG) from the extract of Nelumbo nucifera seeds. Enriched DHPAG sample (2.3 g) was separated by HPCCC using ethyl acetate/n-butanol/water system (6:4:10, v/v/v, normal-phase mode, flow rate: 4.0 mL/min) to give 23.1 mg of DHPAG with purity of 88.7%. Further preparative RP-HPLC experiment gave pure DHPAG (16.3 mg, purity > 98%). The current study demonstrates that utilization of CCC method maximizes the isolation efficiency compared with that of solid-based conventional column chromatography.

분석 및 분리용 크로마토그래피에서 조업조건의 최적화를 위한 HCI 프로그램의 이용 (Use of HCI Program for Optimization of Operating Conditions in Analytical and Preparative Chromatography)

  • 이주원;이민우;노경호
    • KSBB Journal
    • /
    • 제14권4호
    • /
    • pp.408-413
    • /
    • 1999
  • 빠른 분석시간과 우수한 분리도를 가진 분석기기로서 크로마토그래피가 분취용으로 이용되기 위해서는 많은 시료양을 취급할 수 있어야 한다. 이 경우 충전물과 관의 크기가 커지게 되면 관의 효율은 분석용에 비해서 떨어지게 된다. 순도와 수율에 미치는 변수가 서로 복잡하게 연관되어 있기때문에 특히 분취용 조업조건의 최적화는 많은 경험과 실험이 요구된다. 또한 많은 상관된 실험변수들이 있고 분리하고자 하는 물질의 종류가 다양하기 때문에 수학적 모델을 적용하여 시료가 관내에서 거동 (behavior)을 예측하는 것이 쉽지 않다. 이러한 문제점을 해결하기 위해서 외국에서는 최소한의 실험을 통하여 고분가 가치 물질을 효율적이고 경제적으로 얻기 위한 크로마토그래피용 프로그램을 활발하게 이용하기 시작하였다. 인하대학교 고순도분리연구실에서 개발된 HCI 프로그램은 단지 LC에 국한된 것이 아니라 GC,SFC (supercritical fluid chromatography) 뿐만아니라 연속식 시스템인 SMB (simulated moving bed)까지 확장될 예정이다.

  • PDF

Chiral Separation of Tryptophan Enantiomers by Liquid Chromatography with BSA-Silica Stationary Phase

  • Kim Kwonil;Lee Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.17-22
    • /
    • 2000
  • The separation of tryptophan enantiomers was carried out with medium-pressure liquid chromatography using BSA (bovine serum albumin)-bonded silica as a chiral stationary phase. The influence of various experimental factors such as pH and ionic strength of mobile phase, separation temperature, and the presence of organic additives on the resolution was studied. In order to expand this system to preparative scale, the loadability of sample and the stability of stationary phase for repeated use were also examined. The separation of tryptophan enantiomers was successful with this system. The data indicated that a higher separation factor (a) was obtained at a higher pH and lower temperature and ionic strength in mobile phase. Addition of organic additives (acetonitrile and 2-propanol) in mobile phase contributed to reduce the retention time of L-tryptophan. About $30\%$ of the separation factor was reduced after 80 days of repeated use.

  • PDF