• Title/Summary/Keyword: Preliminary engineering design

Search Result 885, Processing Time 0.08 seconds

Case study on Construction and Improvement of Rahmen Structures in Deep Soft Clay Deposit (대심도 연약지반에 설치된 라멘 구조물의 시공 및 보강사례)

  • Lee, Sa-Ik;Choi, Young-Chul;Yoo, Sang-Ho;Kim, Tae-Hyung;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Structures that have constructed in soft clay might suffer from many issues related to consolidation settlement or lateral movement of soft-clay during long-term period. Therefore, it is important to establish proper design and construction processes related to site investigation, soil improvement, construction management, and so on. This case study focused on the construction of the rahmen structure supported by pile foundations. Especially, the structure in this case had been constructed without improving underlying soft clay and before constructing backfill embankment due to the limited construction time and the traffic connection of the old road crossing new highway. Therefore, in order to satisfy the structural stability, the construction processes and countermeasure methods were carefully planned based on the results of preliminary numerical analyses and monitoring of ground behaviors. Through the trial and error precess during the construction, the structures had been successfully constructed.

Far Feild test on Electromagnetic Wave Absorber in Paint Type for X-babd Radar (X-Band Radar용 도료형 전파흡수체의 실장실험)

  • 안영섭;김동일;정세모
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.3-10
    • /
    • 1993
  • As a method to measure the absorbing characteristics of microwave absorber, various microwave measuring method can be used fundamentally. There is, however, a big problem in measuring errors, since the wavelength of microwave such as used for radar is very short. Therefor, this research aimed to design and fabricate a converting adaptor of 20mm .PHI. coaxial tube from a type-N connector to coaxial tube and to use it for evaluating absorption characteristics of microwave absorbor. Furthemore, the measurements of absorbing characteristics and material constants have been perfomed and reviewed, which were carried out by using the coaxial and by using rectangular waveguide, respectively. As a result, the validity of the proposed measuring method has been conformed. In this paper, a preliminary evalua- tion on the characteristics of the electromagnetic wave absorbor for X-band radar designed and fabricated for a laboratory use is performed by reflected power method near to a pratical use. Then for field test by using X-band radar is carried out with real target of $1.2m\times1.2m$ in size. As the result of the above, the usefullness of the designed and fabricated electromagnetic wave absorber in paint type for X-band radar has been confirmed.

  • PDF

A Study on Cost Management at the Pre-construction Phase in the Korean Construction Market (공공건설사업 시공 전 단계 사업비관리 개선에 관한 연구)

  • Kim Min-Kee;Shin Sung-Hoon;Hyun Chang-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.265-270
    • /
    • 2002
  • Frequent design changes or unnecessary project executions due to illogical practice, lack of feasibility study and, hasty drive have raised problems of budget waste in Korean construction projects. Since the MOCT (Ministry of Construction & Transportation) published Master Plan for budget efficiency for government projects, there have been a lot of policy efforts for budget saving. However, it has been pointed out that cost management at the pre-construction phase, which greatly influences the cost still remains imperfect. The target cost for government clients is not being estimated reasonably, and cost controlling at the pre-construction phase is not yet being carried out properly for keeping the budget. Therefore, improved construction cost management at the pre-construction phase was proposed in this paper. The cost management systems of advanced countries were investigated for it, and the issues were drawn from the cost management systems of these countries. On the basis of the issues, the present conditions and problems of domestic construction cost management at the pre-construction phase were analyzed for suggestion.

  • PDF

A Preliminary Study on the Development of a High Elastic Modulus and Low-Shrinkage Roller-Compacted Concrete Base for Composite Pavement (복합포장용 고탄성 저수축 롤러전압콘크리트 기층 개발을 위한 기초연구)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • PURPOSES : The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS : Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS : According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.

Fiber-Optic Current Transformer for the Over Current Protection Relay (과전류 보호계전기용 광섬유 전류센서)

  • Song, Min-Ho;Yang, Chang-Soon;Ahn, Seong-Joon;Park, Byoung-Seok;Lee, Byoung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.542-548
    • /
    • 2001
  • A robust, accurate, broad-band, alternating current sensor using fiber-optics is being developed as a part of optical over current protection relay system. The sensor uses the Faraday effect in optical fiber and polarimetric measurements tc sense electrical current. The current sensing coil consists of a length of twisted optical fiber and Faraday rotator mirror to suppress the linear birefringence effect. Due to its single-ended closed path structure, it can not only be easily installed to the target with great isolation from other fields in the vicinity, but the sensitivity can be increased by using multiple turns. This paper reports on the theoretical backgrounds of the sensor design and the preliminary experimental results.

  • PDF

Suggestion of Regression Equations for Estimating RMR Factor Rating by Geological Condition (지질 조건을 고려한 RMR 인자값 추정을 위한 선형회귀식 제안)

  • Kim, Kwang-Yeom;Yim, Sung-Bin;Kim, Sung-Kwon;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.555-566
    • /
    • 2007
  • In general, RMR classification system is used for the support design of a tunnel. Face mapping during excavation and RMR-based rock classifications are conducted in order to provide information for complementary changes to preliminary survey plans and for continuous geological estimations in direction of tunnel route. Although they are ever so important, there are not enough time for survey in general and sometimes even face mapping is not available. Linear regression analysis for the estimation of mediating RQD and condition of discontinuities, which require longer time and more detailed observation in RMR, was performed and optimum regression equations are suggest as the result. The geological data collected from tunnels were analyzed in accordance with three rock types as sedimentary rock, phyllite and granite to see geological effects, generally not been considered in previous researches. Parameters for the regression analysis were set another RMR factor.

Evaluation of the Seismic Safely of Concrete Gravity Dams (콘크리트 중력식 댐의 내진 안전성 평가)

  • 소진호;정영수;김용곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • Recently, the seismic safety evaluation of concrete gravity dams is raised due to the damage or the failure of dams occurred by the 1995 Kobe earthquake, the 1999 Taiwan earthquake, etc. Failre of dam may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about 'earthquake-resistance' or 'seismic safety'of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic safety of concrete gravity dams on the basis of the evaluation method of seismic safety of concrete gravity dams in U.S.A., Japan, Canada, and etc. level 1 is a preliminary evaluation which is for purpose f screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. Finally, level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dam on operation showed good seismic performance under the designed artificial earthquake.

Resistance Performance of Korean Small Coastal Fishing Boat in Low-Speed Range (한국 저속 소형 연안어선의 저항성능)

  • Jee, Hyun-Woo;Lee, Young-Gill;Kang, Dae-Sun;Ha, Yoon-Jin;Choi, Young-Chan;Yu, Jin-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.1
    • /
    • pp.10-23
    • /
    • 2009
  • Korean small coastal fishing boats have the different kind of fisheries and customs against Japanese fishing boats. Those bring some influences on the principal parameters of hull form. In same displacement, Korean small coastal fishing boat has generally shorter length, draft and wider breadth than Japanese fishing boat. Furthermore, even though the parameters of each hull form are similar, it is known that the resistance performance of Korean small coastal fishing boat is worse than that of Japanese fishing boat. In this study, the representative hull forms of Korean and Japanese small coastal fishing boats are selected and compared to evaluate the resistance performance of Korean fishing boat in low-speed range. The hull form of the Korean fishing boat is modified as comparison with that of the Japanese fishing boat to confirm the partial characteristic differences between the hull forms and the resistance performances. The representative partial characteristics of hull form are the gradient of chine line, keel shape and stern length. The resistance performances of the modified hull forms are evaluated by INHAWAVE which is one of CFD program and model tests in towing tank. The results of the present study will be used to improve the resistance performance and to develop the practical hull form of Korean small coastal fishing boats as principal data in the preliminary hull form design of fishing boats.

Design of cellular, satellite, and integrated systems for 5G and beyond

  • Kim, Junhyeong;Casati, Guido;Cassiau, Nicolas;Pietrabissa, Antonio;Giuseppi, Alessandro;Yan, Dong;Strinati, Emilio Calvanese;Thary, Marjorie;He, Danping;Guan, Ke;Chung, Heesang;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.669-685
    • /
    • 2020
  • 5G AgiLe and fLexible integration of SaTellite And cellulaR (5G-ALLSTAR) is a Korea-Europe (KR-EU) collaborative project for developing multi-connectivity (MC) technologies that integrate cellular and satellite networks to provide seamless, reliable, and ubiquitous broadband communication services and improve service continuity for 5G and beyond. The main scope of this project entails the prototype development of a millimeter-wave 5G New Radio (NR)-based cellular system, an investigation of the feasibility of an NR-based satellite system and its integration with cellular systems, and a study of spectrum sharing and interference management techniques for MC. This article reviews recent research activities and presents preliminary results and a plan for the proof of concept (PoC) of three representative use cases (UCs) and one joint KR-EU UC. The feasibility of each UC and superiority of the developed technologies will be validated with key performance indicators using corresponding PoC platforms. The final achievements of the project are expected to eventually contribute to the technical evolution of 5G, which will pave the road for next-generation communications.

A Study on the Design and Realization of the Doppler VHF Omnidirectional Radio Virtual Monitoring System (도플러 전방향 표지시설(DVOR) 가상 모니터링 시스템 설계 및 구현에 관한 연구)

  • Kim, Kyung-Tae;Yoon, Jun-Chul;Chang, Hae-Dong;Kang, Suk-Youb;Park, Hyo-Dal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.265-272
    • /
    • 2011
  • This study designed and manufactured "a DVOR virtual signal generator" to make the monitoring system of preliminary Doppler VHF Omni-directional Radio Range(DVOR) run like its real operation status in a narrow space in order to study "a DVOR virtual monitoring system". The designed and manufactured DVOR virtual signal generator is suitable for the specification of signal that is generated in the currently running equipment. In addition, it is possible to control operation conditions of equipment by using parameter variables, and the circuit construction is largely divided into the input part, the modulation part, the high-gain amplifier, and the power part. "The DVOR virtual monitoring system using the virtual signal designed and implemented in this study is very suitable to be used for low-cost actual education as it can construct the operation status like the real situation in a narrow space without using an actual system like an antenna generating side band.