• 제목/요약/키워드: Preference clustering

검색결과 80건 처리시간 0.025초

기계학습 기반 적응형 전자상거래 에이전트 설계 (Design of Adaptive Electronic Commerce Agents Using Machine Learning Techniques)

  • 백혜정;박영택
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.775-782
    • /
    • 2002
  • 전자상거래 시스템의 보급이 활성화되기 시작하면서 사용자의 구매 행위에 적응형으로 대처하는 지능형 전자상거래 에이전트의 필요성이 증대되고 있다. 이와 같은 적응형 전자상거래 에이전트는 사용자의 구매 행위를 모니터하면서, 각 분야별 고객의 구매 행위를 자동 분류하고, 분류된 각 클러스터로부터 사용자의 취향을 학습하는 하는 기능을 필요로 한다. 이러한 기능을 가지는 적응형 전자상거래 에이전트를 구축하기 위해서 본 논문에서는다음 3가지 부분에 중점을 두고 시스템을 설계하였다. 첫째, 사용자의 구매 행위를 포괄적으로 모니터하여 사용자 행위로 추상화하는 모니터 에이전트, 둘째, 고객 구매 행위 데이터로부터 유사한 분야 구매 데이터들로 클러스터 하는 개념적 클러스터 에이전트, 셋째, 각 클러스터로부터 사용자 프로파일을 구축하는 사용자 프로파일 에이전트를 중심으로 설계하는 방안을 제안하고 있다 특히, 본 논문에서는 보다 정확한 고객 구매 행위를 학습하기 위해서 개념적 클러스터링 방식과 귀납적 기계학습 방식을 적용하는 2단계 구조를 제안하고 있다.이와 같은 구조는 여러 분야의 상품을 구매한 정보로부터 사용자의 다중 취향을 학습할 때발생하는 문제를 해결함으로, 사용자 프로파일을 정확하게 구축할 수 있는 장점이 있다. 이러한 정확한 사용자 프로파일을 기반으로 사용자에게 보다 적절한 정보를 제공하는 적응형 전자상거래 시스템을 만들 수 있다.

오피니언마이닝을 이용한 사용자 맞춤 장소 추천 시스템 (Location Recommendation Customize System Using Opinion Mining)

  • 최은정;김동근
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2043-2051
    • /
    • 2017
  • 최근 빅데이터 분야의 높아진 관심과 더불어 빅데이터의 처리를 통한 응용 분야에 대한 관심도 높아지고 있다. 개인의 감성을 파악할 수 있는 오피니언마이닝은 사용자 개인 맞춤 서비스 제공 분야에서 많이 이용되고 있는 빅데이터 처리 기법이다. 이를 바탕으로 본 논문에서는 사용자들의 장소에 대한 텍스트 형태의 리뷰를 오피니언마이닝 기법으로 처리하고 k-means 클러스터링 작업을 통해 사용자의 감성을 분석하였다. 클러스터링 작업으로 분류된 비슷한 범주의 감성을 가진 사용자들끼리 동일한 수치 값을 부여한다. 부여된 수치 값으로 협업 필터링 추천 시스템을 이용해 선호도를 예측하고 예측 값이 높은 장소 순으로 지도위에 마커와 함께 내용을 표시하여 사용자에게 추천내용을 보여줄 수 있는 방안을 제안하였다.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

대표 속성을 이용한 최적 연관 이웃 마이닝 (Optimal Associative Neighborhood Mining using Representative Attribute)

  • 정경용
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.50-57
    • /
    • 2006
  • 최근 정보 기술의 발전에 따라 다양하고 폭넓은 정보들이 디지털 형태로 빠르게 생산 및 배포되고 있다. 사용자가 이러한 정보과잉 속에서 자신이 원하는 정보를 단시간 내에 검색하는 것은 그리 쉬운 일이 아니다. 따라서 유비쿼터스 상거래에서 사용자가 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 개인화된 추천 시스템이 등장하였으며, 더 나아가 사용자가 원하는 아이템을 예측하고 추천해주고 있으며 이를 위해 협력적 필터링을 적용하고 있다. 이는 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 본 연구는 정보의 속성에 대한 사용자의 선호도를 고려하지 않은 문제를 개선하기 위하여 연관 이웃 마이닝을 사용하여 대표속성에 대한 연관 사용자의 선호도를 협력적 필터링에 반영하였다. 연관 이웃 마이닝은 선호도에 가장 크게 영향을 미치는 속성을 추출하여 유사한 성향을 가진 연관 사용자를 군집한다. 제안된 방법은 사용자가 아이템에 대해서 평가한 MovieLens 데이터 집합을 대상으로 평가되었으며, 기존의 nearest neighbor model과 K-means 군집보다 그 성능이 우수함을 보인다.

식생활라이프스타일 추구 성향에 따른 영양지식수준 및 식품기호도 분석 - 서울, 경기도 거주 주부들을 중심으로 - (An Analysis on Nutrition Knowledge Level and Food Preference according to the Food-related Lifestyle Tendency - Focus on Housewives in the Seoul and Gyeonggi area -)

  • 이인옥;정소연;홍금주
    • 한국식생활문화학회지
    • /
    • 제31권1호
    • /
    • pp.33-41
    • /
    • 2016
  • The purpose of this study was to examine the difference in nutritional knowledge and food preferences according to food-related lifestyle among 400 married women. Using the K-average clustering method, food-related lifestyles of subjects were categorized into three clusters: rational and diversity-oriented group, convenience-oriented group, and health-oriented group. The nutritional knowledge level and food preferences among three clusters were compared to each other using ANOVA test. The findings were summarized as follows: For the nutritional knowledge level, health-oriented group showed the highest mean score, whereas the lowest score was detected in the convenience-oriented group. The convenience-oriented group showed higher preferences for fish, meat, eggs, fruits, milk/dairy products, seaweed, grains, etc. among natural food than the other groups. Meanwhile, the rational and diversity-oriented group preferred legumes, and green vegetables, whereas the health-oriented group showed preferences for other vegetables. However, the convenience-oriented group reported more preferences for breads, noodles, pancakes, fried/stir-fried food, and processed food such as sausage, ham, and fast food, This study found that nutritional knowledge level and food preferences were significantly different according to food-related lifestyles of married women living in Seoul and Gyonggie areas. Thus, it is suggested that nutritional education targeting married women needs to be carefully designed by considering their food-related lifestyle.

자기 조직화 신경망(SOM)을 이용한 협력적 여과 기법의 웹 개인화 시스템에 대한 연구 (Collaborative Filtering System using Self-Organizing Map for Web Personalization)

  • 강부식
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.117-135
    • /
    • 2003
  • 개인화 된 정보를 제공하기 위한 협력 여과 기법에 대한 많은 연구가 이루어지고 있는데, 유사 사용자들을 찾는 과정에서 상관계수와 같은 유사성 척도를 이용하여 모든 사용자와의 유사성을 계산하는 과정을 거친다. 이때 사용자 수가 많아지게 되면, 계산의 복잡도가 지수적으로 증가하게 되는 규모의 문제가 발생한다. 본 연구는 협력 여과 기법에서 주로 사용하는 유사성 척도가 사용자 집단이 커짐에 따라 계산의 복잡도가 지수적으로 증가하는 문제를 해결하기 위한 방안을 제시하는 것이 주목적이다. 규모의 문제를 해결하기 위해 클러스터링 모델 기반 접근 방식을 사용하고 아이템의 선호도 계산을 위해 RPM(Recency, Frequency, Momentary) 기준의 사용을 제안한다. 먼저 SOM을 이용하여 전체 사용자를 사용자 집단으로 클러스터링하고 사용자 집단별로 RFM 기준에 의해 아이템의 점수를 계산하여 선호도가 높은 순으로 정렬하여 저장한다. 사용자가 로그인하면 학습된 SOM을 이용하여 대상 사용자 집단을 선정하고 미리 저장된 추천 아이템을 추천한다. 추천결과에 대해 사용자가 평가하면 그 결과를 이용하여 현 시스템의 개정 여부를 결정한다. 제안한 방안에 대해 MovieLens 데이터 셋에 적용하여 실험한 결과 기존의 협력적 여과 기법에 비해 추천 성능이 비교적 우수하면서도 추천 시스템 운용시의 계산 복잡도를 일정하게 유지시킬 수 있음을 보였다.

  • PDF

사용자의 평가 횟수와 협동적 필터링 성과간의 관계 분석 (Analysis of the Number of Ratings and the Performance of Collaborative Filtering)

  • 이홍주;김종우;박성주
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.629-638
    • /
    • 2005
  • In this paper, we consider two issues in collaborative filtering, which are closely related with the number of ratings of a user. First issue is the relationship between the number of ratings of a user and the performance of collaborative filtering. The relationship is investigated with two datasets, EachMovie and Movielens datasets. The number of ratings of a user is critical when the number of ratings is small, but after the number is over a certain threshold, its influence on recommendation performance becomes smaller. We also provide an explanation on the relationship between the number of ratings of a user and the performance in terms of neighborhood formations in collaborative filtering. The second issue is how to select an initial product list for new users for gaining user responses. We suggest and analyze 14 selection strategies which include popularity, favorite, clustering, genre, and entropy methods. Popularity methods are adequate for getting higher number of ratings from users, and favorite methods are good for higher average preference ratings of users.

  • PDF

Smart Thermostat based on Machine Learning and Rule Engine

  • Tran, Quoc Bao Huy;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.155-165
    • /
    • 2020
  • In this paper, we propose a smart thermostat temperature set-point control method based on machine learning and rule engine, which controls thermostat's temperature set-point so that it can achieve energy savings as much as possible without sacrifice of occupants' comfort while users' preference usage pattern is respected. First, the proposed method periodically mines data about how user likes for heating (winter)/cooling (summer) his or her home by learning his or her usage pattern of setting temperature set-point of the thermostat during the past several weeks. Then, from this learning, the proposed method establishes a weekly schedule about temperature setting. Next, by referring to thermal comfort chart by ASHRAE, it makes rules about how to adjust temperature set-points as much as low (winter) or high (summer) while the newly adjusted temperature set-point satisfies thermal comfort zone for predicted humidity. In order to make rules work on time or events, we adopt rule engine so that it can achieve energy savings properly without sacrifice of occupants' comfort. Through experiments, it is shown that the proposed smart thermostat temperature set-point control method can achieve better energy savings while keeping human comfort compared to other conventional thermostat.

대학생들의 집단별 라이프 스타일에 따른 패션라이프스타일 및 컬러 관심도 (간호, 보건계열 학생들을 중심으로) (A Study on Fashion Lifestyle and Color Interests in Accordance with Group University Students' Lifestyle (Focused on Students in Health and Nursing Fields))

  • 허남문;최성숙
    • 한국임상보건과학회지
    • /
    • 제4권2호
    • /
    • pp.556-565
    • /
    • 2016
  • Purpose. This study pourpose to fashion lifestyle and color interests in accordance with group university students' lifestyle focused on students in health and nursing fields. Methods. This study administered a structured questionnaire to 321 random subjects who currently major in health and nursing fields and who reside in Daegu city. For the collected data, using the SPSS 18.0, the following analyses were implemented: frequency analysis, factor analysis, K-means clustering analysis, t-test, and ${\chi}^2$-test. Result. In terms of lifestyle, seniors had shown more active groups than passive groups in comparison to their juniors. The active group in terms of lifestyle has shown higher interest in the importance of apparel and fashion leadership in comparison to the passive group. The active group in terms of lifestyle has also shown higher interest in color in comparison to the passive group. Conclusion. A fashion leader leading by examining the fashion life style and color interest in accordance with the lifestyle to target college students to investigate a variety of consumption patterns made according to personal preference consists of a smooth communication between businesses and consumers needed for product development.

Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis

  • Bae, Young-An;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • 제41권4호
    • /
    • pp.209-219
    • /
    • 2003
  • The evolutionary course of the CsRn1 long-terminal-repeat (LTR) retrotransposon was predicted by conducting a phylogenetic analysis with its paralog LTR sequences. Based on the clustering patterns in the phylogenetic tree, multiple CsRn1 copies could be grouped into four subsets, which were shown to have different integration times. Their differential sequence divergences and heterogeneous integration patterns strongly suggested that these subsets appeared sequentially in the genome of C. sinensis. Members of recently expanding subset showed the lowest level of divergence in their L TR and reverse transcriptase gene sequences. They were also shown to be highly polymorphic among individual genomes of the trematode. The CsRn1 element exhibited a preference for repetitive, agenic chromosomal regions in terms of selecting integration targets. Our results suggested that CsRn1 might induce a considerable degree of intergenomic variation and, thereby, have influenced the evolution of the C. sinensis genome.