• 제목/요약/키워드: Predictive probabilistic model

검색결과 33건 처리시간 0.027초

전방향 주변 차량의 확률적 거동 예측을 이용한 모델 예측 제어 기법 기반 자율주행자동차 조향 제어 (MPC based Steering Control using a Probabilistic Prediction of Surrounding Vehicles for Automated Driving)

  • 이준영;이경수
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.199-209
    • /
    • 2015
  • This paper presents a model predictive control (MPC) approach to control the steering angle in an autonomous vehicle. In designing a highly automated driving control algorithm, one of the research issues is to cope with probable risky situations for enhancement of safety. While human drivers maneuver the vehicle, they determine the appropriate steering angle and acceleration based on the predictable trajectories of surrounding vehicles. Likewise, it is required that the automated driving control algorithm should determine the desired steering angle and acceleration with the consideration of not only the current states of surrounding vehicles but also their predictable behaviors. Then, in order to guarantee safety to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, we define a safe driving envelope with the consideration of probable risky behaviors among the predicted probable behaviors of surrounding vehicles over a finite prediction horizon. For the control of the vehicle while satisfying the safe driving envelope and system constraints over a finite prediction horizon, a MPC approach is used in this research. At each time step, MPC based controller computes the desired steering angle to keep the subject vehicle in the safe driving envelope over a finite prediction horizon. Simulation and experimental tests show the effectiveness of the proposed algorithm.

A hierarchical Bayesian model for spatial scaling method: Application to streamflow in the Great Lakes basin

  • Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.176-176
    • /
    • 2018
  • This study presents a regional, probabilistic framework for estimating streamflow via spatial scaling in the Great Lakes basin, which is the largest lake system in the world. The framework follows a two-fold strategy including (1) a quadratic-programming based optimization model a priori to explore the model structure, and (2) a time-varying hierarchical Bayesian model based on insights found in the optimization model. The proposed model is developed to explore three innovations in hierarchical modeling for reconstructing historical streamflow at ungaged sites: (1) information of physical characteristics is utilized in spatial scaling, (2) a time-varying approach is introduced based on climate information, and (3) heteroscedasticity in residual errors is considered to improve streamflow predictive distributions. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with four simpler nested formulations and the optimization model to confirm specific hypotheses embedded in the full model structure. The nested models assume a similar hierarchical Bayesian structure to our proposed model with their own set of simplifications and omissions. Results suggest that each of three innovations improve historical out-of-sample streamflow reconstructions although these improvements vary corrsponding to each innovation. Finally, we conclude with a discussion of possible model improvements considered by additional model structure and covariates.

  • PDF

Reclaiming Multifaceted Financial Risk Information from Correlated Cash Flows under Uncertainty

  • Byung-Cheol Kim;Euysup Shim;Seong Jin Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.602-607
    • /
    • 2013
  • Financial risks associated with capital investments are often measured with different feasibility indicators such as the net present value (NPV), the internal rate of return (IRR), the payback period (PBP), and the benefit-cost ratio (BCR). This paper aims at demonstrating practical applications of probabilistic feasibility analysis techniques for an integrated feasibility evaluation of the IRR and PBP. The IRR and PBP are concurrently analyzed in order to measure the profitability and liquidity, respectively, of a cash flow. The cash flow data of a real wind turbine project is used in the study. The presented approach consists of two phases. First, two newly reported analysis techniques are used to carry out a series of what-if analyses for the IRR and PBP. Second, the relationship between the IRR and PBP is identified using Monte Carlo simulation. The results demonstrate that the integrated feasibility evaluation of stochastic cash flows becomes a more viable option with the aide of newly developed probabilistic analysis techniques. It is also shown that the relationship between the IRR and PBP for the wind turbine project can be used as a predictive model for the actual IRR at the end of the service life based on the actual PBP of the project early in the service life.

  • PDF

Hybrid machine learning with moth-flame optimization methods for strength prediction of CFDST columns under compression

  • Quang-Viet Vu;Dai-Nhan Le;Thai-Hoan Pham;Wei Gao;Sawekchai Tangaramvong
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.679-695
    • /
    • 2024
  • This paper presents a novel technique that combines machine learning (ML) with moth-flame optimization (MFO) methods to predict the axial compressive strength (ACS) of concrete filled double skin steel tubes (CFDST) columns. The proposed model is trained and tested with a dataset containing 125 tests of the CFDST column subjected to compressive loading. Five ML models, including extreme gradient boosting (XGBoost), gradient tree boosting (GBT), categorical gradient boosting (CAT), support vector machines (SVM), and decision tree (DT) algorithms, are utilized in this work. The MFO algorithm is applied to find optimal hyperparameters of these ML models and to determine the most effective model in predicting the ACS of CFDST columns. Predictive results given by some performance metrics reveal that the MFO-CAT model provides superior accuracy compared to other considered models. The accuracy of the MFO-CAT model is validated by comparing its predictive results with existing design codes and formulae. Moreover, the significance and contribution of each feature in the dataset are examined by employing the SHapley Additive exPlanations (SHAP) method. A comprehensive uncertainty quantification on probabilistic characteristics of the ACS of CFDST columns is conducted for the first time to examine the models' responses to variations of input variables in the stochastic environments. Finally, a web-based application is developed to predict ACS of the CFDST column, enabling rapid practical utilization without requesting any programing or machine learning expertise.

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

Weighted Local Naive Bayes Link Prediction

  • Wu, JieHua;Zhang, GuoJi;Ren, YaZhou;Zhang, XiaYan;Yang, Qiao
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.914-927
    • /
    • 2017
  • Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.

산사태 취약성 분석을 위한 GIS 기반 확률론적 추정 모델과 모수적 모델의 적용 (Application of GIS-based Probabilistic Empirical and Parametric Models for Landslide Susceptibility Analysis)

  • 박노욱;지광훈;;권병두
    • 자원환경지질
    • /
    • 제38권1호
    • /
    • pp.45-55
    • /
    • 2005
  • 산사태 취약성 분석을 위해 적용된 기존 GIS 기반 확률론적 공간 통합 모델은 범주형과 연속형 자료와 같이 서로 다른 형태의 자료의 처리를 위한 이론적 배경과 효율적인 방법론을 제시하지 못하였다. 이 논문에서는 우도비의 틀 안에서 연속형 자료를 직접적으로 사용할 수 있도록 비모수적 경험적 추정 모델과 모수적 예측적 판별 분석 모델을 적용하였다. 그리고 유사율과 예측비율곡선을 계산함으로써 두 모델을 정량적으로 비교하고자 하였다. 제안 모델을 비 교하기 위해 1998년 여름 산사태로 많은 피해를 입은 장흥 지역과 보은 지역을 대상으로 사례연구를 수행하였다. 장 흥 지역에서는 두 모델이 유사한 예측 능력을 나타내었으나, 보은 지역에서는 모수적 예측적 판별 분석 모델이 보다 높은 예측 능력을 나타내었다. 결론적으로 제안한 두 모델은 산사태 취약성 분석을 위한 연속형 자료 표현에 효율적 으로 적용될 수 있으며, 두 모델이 개별적인 연속형 자료 표현의 특성을 가지고 있기 때문에 다른 사례 연구를 통한 검증 작업이 병행되어야 할 것으로 생각된다.

Minimizing Leakage of Sequential Circuits through Flip-Flop Skewing and Technology Mapping

  • Heo, Se-Wan;Shin, Young-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권4호
    • /
    • pp.215-220
    • /
    • 2007
  • Leakage current of CMOS circuits has become a major factor in VLSI design these days. Although many circuit-level techniques have been developed, most of them require significant amount of designers' effort and are not aligned well with traditional VLSI design process. In this paper, we focus on technology mapping, which is one of the steps of logic synthesis when gates are selected from a particular library to implement a circuit. We take a radical approach to push the limit of technology mapping in its capability of suppressing leakage current: we use a probabilistic leakage (together with delay) as a cost function that drives the mapping; we consider pin reordering as one of options in the mapping; we increase the library size by employing gates with larger gate length; we employ a new flipflop that is specifically designed for low-leakage through selective increase of gate length. When all techniques are applied to several benchmark circuits, leakage saving of 46% on average is achieved with 45-nm predictive model, compared to the conventional technology mapping.

Safety Analysis on the Tritium Release Accidents

  • Yang, Hee joong
    • 품질경영학회지
    • /
    • 제19권2호
    • /
    • pp.96-107
    • /
    • 1991
  • At the design stage of a plant, the plausible causes and pathways of release of hazardous materials are not clearly known. Thus there exist large amount of uncertainties on the consequences resulting from the operation of a fusion plant. In order to better handle such uncertain circumstances, we utilize the Probabilistic Risk Assessment(PRA) for the safety analyses on fusion power plant. In this paper, we concentrate on the tritium release accident. We develop a simple model that describes the process and flow of tritium, by which we figure out the locations of tritium inventory and their vulnerability. We construct event tree models that lead to various levels of tritium release from abnormal initiating events. Branch parameters on the event tree are assessed from the fault tree analysis. Based on the event tree models we construct influence diagram models which are more useful for the parameter updating and analysis. We briefly discuss the parameter updating scheme, and finally develop the methodology to obtain the predictive distribution of consequences resulting from the operating a fusion power plant. We also discuss the way to utilize the results of testing on sub-systems to reduce the uncertain ties on over all system.

  • PDF

원자핵 융합 발전소의 삼중수소 유출 사고 예측 (Predicting the Tritium Release Accident in a Nuclear Fusion Plant)

  • 양희중
    • 품질경영학회지
    • /
    • 제26권1호
    • /
    • pp.201-212
    • /
    • 1998
  • A methodology of the safety analysis on the fusion power plant is introduced. It starts with the understanding of the physics and engineering of the plant followed by the assessment of the tritium inventory and flow rate. We a, pp.y the probabilistic risk assessment. An event tree that explains the propagation of the accident is constructed and then it is translated in to an influence diagram, that is accident is constructed and then it is translated in to an influence diagram, that is statistically equivalent so far as the parameter updating is concerned. We follow the Bayesian a, pp.oach where model parameters are treated as random variables. We briefly discuss the parameter updating scheme, and finally develop the methodology to obtain the predictive distribution of time to next severe accident.

  • PDF