• Title/Summary/Keyword: Prediction of variables

Search Result 1,817, Processing Time 0.03 seconds

Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches (선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Yang, Kyung-Kyu;Kim, Myung-Soo;Lee, Young-Yeon;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.

A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining (금형의 절삭가공에서 이론 모형 기반 표면거칠기 예측 결과의 실험적 모형 전환을 위한 인공신경망 구축에 대한 연구)

  • Ji-Woo Kim;Dong-Won Lee;Jong-Sun Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • In the fabrication of curved multi-display glass for automotive use, the surface roughness of the mold is a critical quality factor. However, the difficulty in detecting micro-cutting signals in a micro-machining environment and the absence of a standardized model for predicting micro-cutting forces make it challenging to intuitively infer the correlation between cutting variables and actual surface roughness under machining conditions. Consequently, current practices heavily rely on machining condition optimization through the utilization of cutting models and experimental research for force prediction. To overcome these limitations, this study employs a surface roughness prediction formula instead of a cutting force prediction model and converts the surface roughness prediction formula into experimental data. Additionally, to account for changes in surface roughness during machining runtime, the theory of position variables has been introduced. By leveraging artificial neural network technology, the accuracy of the surface roughness prediction formula model has improved by 98%. Through the application of artificial neural network technology, the surface roughness prediction formula model, with enhanced accuracy, is anticipated to reliably perform the derivation of optimal machining conditions and the prediction of surface roughness in various machining environments at the analytical stage.

Landslide Stability Analysis and Prediction Modeling with Landslide Occurrences on KOMPSAT EOC Imagery

  • Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Landslide prediction modeling has been regarded as one of the important environmental applications in GIS. While, landslide stability in a certain area as collateral process for prediction modeling can be characterized by DEM-based hydrological features such as flow-direction, flow-accumulation, flow-length, wetness index, and so forth. In this study, Slope-Area plot methodology followed by stability index mapping with these hydrological variables is firstly performed for stability analysis with actual landslide occurrences at Boeun area, Korea, and then Landslide prediction modeling based on likelihood ratio model for landslide potential mapping is carried out; in addition, KOMPSAT EOC imagery is used to detect the locations and scalped scale of Landslide occurrences. These two tasks are independently processed for preparation of unbiased criteria, and then results of those are qualitatively compared. As results of this case study, land stability analysis based on DEM-based hydrological variables directly reflects terrain characteristics; however, the results in the form of land stability map by landslide prediction model are not fully matched with those of hydrologic landslide analysis due to the heuristic scheme based on location of existed landslide occurrences within prediction approach, especially zones of not-investigated occurrences. Therefore, it is expected that the resets on the space-robustness of landslide prediction models in conjunction with DEM-based landslide stability analysis can be effectively utilized to search out unrevealed or hidden landslide occurrences.

Temporal and Spatial correlation of Meteorological Data in Sumjin River and Yongsan River Basins (섬진강 및 영산강 유역 기상자료의 시.공간적 상관성)

  • 김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.44-53
    • /
    • 1999
  • The statistical characteristics of the factors related to the daily rainfall prediction model are analyzed . Records of daily precipitation, mean air temperature, relative humidity , dew-point temperature and air pressure from 1973∼1998 at 8 meteorological sttions in south-western part of Korea were used. 1. Serial correlatino of daily precipitaiton was significant with the lag less than 1 day. But , that of other variables were large enough until 10 day lag. 2. Crosscorrelation of air temperature, relative humidity , dew-point temperature showed similar distribution wiht the basin contrours and the others were different. 3. There were significant correlation between the meteorological variables and precipitation preceded more than 2 days. 4. Daily preciption of each station were treated as a truncated continuous random variable and the annual periodic components, mean and standard deviation were estimated for each day. 5. All of the results could be considered to select the input variables of regression model or neural network model for the prediction of daily precipitation and to construct the stochastic model of daily precipitation.

  • PDF

PREDICTION OF DAILY MAXIMUM X-RAY FLUX USING MULTILINEAR REGRESSION AND AUTOREGRESSIVE TIME-SERIES METHODS

  • Lee, J.Y.;Moon, Y.J.;Kim, K.S.;Park, Y.D.;Fletcher, A.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.99-106
    • /
    • 2007
  • Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a $2{\times}2$ contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' $X^2$ statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.

Development of Accident Modification Factors for Road Design Safety Evaluation Algorithm of Rural Intersections (지방부 교차로의 도로설계 안전성 판단 알고리즘 구축을 위한 AMF 개발 (신호교차로를 중심으로))

  • Kim, Eung-Cheol;Lee, Dong-Min;Choe, Eun-Jin;Kim, Do-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.91-102
    • /
    • 2009
  • A traffic accident prediction model developed using various design variables(road design variables, geometric variables, and traffic environmental variables) is one of the most important factors to safety design evaluation system for roads. However, statistical accident models have a crucial problem not applicable for all intersections. To make up this problem, this study developed AMFs(Accident Modification Factors) through statistical modeling methods, historical accident databases, judgment from traffic experts, and literature review by considering design variable's characteristics, traffic accident rates, and traffic accident frequency. AMFs developed in this study include exclusive left-turn lane, exclusive right-turn lane, sight distance, and intersection angle. Predictabilities of the developed AMFs and the existing accident prediction models are compared with real accident historical data. The results showed that performances of the developed AMFs are superior to the existing statistical accident prediction models. These findings show that AMFs should be considered as a important process to develop safety design evaluation algorithms. Additionally, AMFs could be used as an index that can judge the impact of corresponding design variables on accidents in rural intersections.

ALC(Autoclaved Lightweight Concrete) Hardness Prediction by Multiple Regression Analysis (다중회귀분석을 이용한 ALC 경도예측에 관한 연구)

  • Kim, Kwang-Soo;Baek, Seung-Hoon;Chung, Soon-Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 2012
  • In the ALC(Autoclaved lightweight concrete) manufacturing process, if the pre-cured semi-cake is removed after proper time is passed, it will be hard to retain the moisture and be easily cracked. Therefore, in this research, we took the research by multiple regression analysis to find relationship between variables for the prediction the hardness that is the control standard of the removal time. We study the relationship between Independent variables such as the V/T(Vibration Time), V/T movement, expansion height, curing time, placing temperature, Rising and C/S ratio and the Dependent variables, the hardness by multiple regression analysis. In this study, first, we calculated regression equation by the regression analysis, then we tried phased regression analysis, best subset regression analysis and residual analysis. At last, we could verify curing time, placing temperature, Rising and C/S ratio influence to the hardness by the estimated regression equation.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

Finite Element Analysis for Shape Prediction on Micro Lens Forming (마이크로 렌즈 성형시 형상예측을 위한 유한요소해석)

  • 전병희;홍석관;표창률
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.581-588
    • /
    • 2002
  • Among the processes to produce micro lens, the process using press molding is a new technology to simplify the process, but it contains many unknown variables. The press-molding process proposed in this paper was simplified into two step process, the first step is the pressing to design the preform for glass element, the second step is the annealing to reduce the residual stress. It is important to estimate the amount of shrinkage of glass gob and the residual stress during process. It Is difficult to evaluate the process variables as mentioned above through the experiment. The influences due to process variables was evaluated by using FEM parametric analysis. The results in this paper can be applicable to produce micro lens.

ALC(Autoclaved Lightweight Concrete) Hardness Prediction Research By Multiple Regression Analysis (다중회귀분석을 이용한 ALC 경도예측에 관한 연구)

  • Kim, Gwang-Su;Baek, Seung-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.117-137
    • /
    • 2012
  • In the ALC(Autoclaved lightweight concrete) manufacturing process, if the pre-cured semi-cake is removed after proper time is passed, it will be hard to retain the moisture and be easily cracked. Therefore, in this research, we took the research by multiple regression analysis to find relationship between variables for the prediction the hardness that is the control standard of the removal time. We study the relationship between Independent variables such as the V/T(Vibration Time), V/T movement, expansion height, curing time, placing temperature, Rising and C/S ratio and the Dependent variables, the hardness by multiple regression analysis. In this study, first, we calculated regression equation by the regression analysis, then we tried phased regression analysis, best subset regression analysis and residual analysis. At last, we could verify curing time, placing temperature, Rising and C/S ratio influence to the hardness by the estimated regression equation.

  • PDF