• Title/Summary/Keyword: Prediction of Prognosis

Search Result 207, Processing Time 0.026 seconds

Molecular Classification of Hepatocellular Carcinoma and Its Impact on Prognostic Prediction and Personized Therapy

  • Dhruba Kadel;Lun-Xiu Qin
    • Journal of Digestive Cancer Research
    • /
    • v.5 no.1
    • /
    • pp.5-15
    • /
    • 2017
  • Hepatocellular carcinoma (HCC) is the sixth most common cancer and second leading cause of cancer-related death in the world. The aggressive but not always predictable pattern of HCC causes the limited treatment option and poorer outcome. Many researches had already proven the heterogeneity of HCC is one of the major challenges for treatment option and prognosis prediction. Molecular subtyping of HCC and selection of patient based on molecular profile can provide the optimization in the treatment and prognosis prediction. In this review, we have tried to summarize the molecular classification of HCC proposed by different valuable researches presented in the logistic way.

  • PDF

Ovarian Cancer Prognostic Prediction Model Using RNA Sequencing Data

  • Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.32.1-32.7
    • /
    • 2018
  • Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.

Identification of Heterogeneous Prognostic Genes and Prediction of Cancer Outcome using PageRank (페이지랭크를 이용한 암환자의 이질적인 예후 유전자 식별 및 예후 예측)

  • Choi, Jonghwan;Ahn, Jaegyoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • The identification of genes that contribute to the prediction of prognosis in patients with cancer is one of the challenges in providing appropriate therapies. To find the prognostic genes, several classification models using gene expression data have been proposed. However, the prediction accuracy of cancer prognosis is limited due to the heterogeneity of cancer. In this paper, we integrate microarray data with biological network data using a modified PageRank algorithm to identify prognostic genes. We also predict the prognosis of patients with 6 cancer types (including breast carcinoma) using the K-Nearest Neighbor algorithm. Before we apply the modified PageRank, we separate samples by K-Means clustering to address the heterogeneity of cancer. The proposed algorithm showed better performance than traditional algorithms for prognosis. We were also able to identify cluster-specific biological processes using GO enrichment analysis.

Identification of prognosis-specific network and prediction for estrogen receptor-negative breast cancer using microarray data and PPI data (마이크로어레이 데이터와 PPI 데이터를 이용한 에스트로겐 수용체 음성 유방암 환자의 예후 특이 네트워크 식별 및 예후 예측)

  • Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.137-147
    • /
    • 2015
  • This study proposes an algorithm for predicting breast cancer prognosis based on genetic network. We identify prognosis-specific network using gene expression data and PPI(protein-protein interaction) data. To acquire the network, we calculate Pearson's correlation coefficient(PCC) between genes in all PPI pairs using gene expression data. We develop a prediction model for breast cancer patients with estrogen-receptor-negative using the network as a classifier. We compare classification performance of our algorithm with existing algorithms on independent data and shows our algorithm is improved. In addition, we make an functionality analysis on the genes in the prognosis-specific network using GO(Gene Ontology) enrichment validation.

A Study on a Reliability Prognosis based on Censored Failure Data (정시중단 고장자료를 이용한 신뢰성예측 연구)

  • Baek, Jae-Jin;Rhie, Kwang-Won;Meyna, Arno
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Collecting all failures during life cycle of vehicle is not easy way because its life cycle is normally over 10 years. Warranty period can help gathering failures data because most customers try to repair its failures during warranty period even though small failures. This warranty data, which means failures during warranty period, can be a good resource to predict initial reliability and permanence reliability. However uncertainty regarding reliability prediction remains because this data is censored. University of Wuppertal and major auto supplier developed the reliability prognosis model considering censored data and this model introduce to predict reliability estimate further "failure candidate". This paper predicts reliability of telecommunications system in vehicle using the model and describes data structure for reliability prediction.

GIS-based Metallogenic Prognosis of Lead-Zinc Deposits in China

  • Tang, Panke;Wang, Chunyan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.91-99
    • /
    • 2015
  • In this paper, we introduce the application of several currently-representative methods for mineral resources potential assessment on Geographic information system(hereinafter referred to as GIS), and combined with mineral resources potential assessment performed in China and with lead-zinc deposits taken as an example, summarized and divided minerals prediction and assessment models; on this basis, this paper presented the process of metallogenic prognosis based on MRAS platform, and made a simple analysis on existing problems.

Prediction of Survival in Patients with Advanced Cancer: A Narrative Review and Future Research Priorities

  • Yusuke Hiratsuka;Jun Hamano;Masanori Mori;Isseki Maeda;Tatsuya Morita;Sang-Yeon Suh
    • Journal of Hospice and Palliative Care
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • This paper aimed to summarize the current situation of prognostication for patients with an expected survival of weeks or months, and to clarify future research priorities. Prognostic information is essential for patients, their families, and medical professionals to make end-of-life decisions. The clinician's prediction of survival is often used, but this may be inaccurate and optimistic. Many prognostic tools, such as the Palliative Performance Scale, Palliative Prognostic Index, Palliative Prognostic Score, and Prognosis in Palliative Care Study, have been developed and validated to reduce the inaccuracy of the clinician's prediction of survival. To date, there is no consensus on the most appropriate method of comparing tools that use different formats to predict survival. Therefore, the feasibility of using prognostic scales in clinical practice and the information wanted by the end users can determine the appropriate prognostic tool to use. We propose four major themes for further prognostication research: (1) functional prognosis, (2) outcomes of prognostic communication, (3) artificial intelligence, and (4) education for clinicians.

Pattern Classification of Retinitis Pigmentosa Data for Prediction of Prognosis (망막색소변성 데이터의 예후 예측을 위한 패턴 분류)

  • Kim, Hyun-Mi;Woo, Yong-Tae;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.701-710
    • /
    • 2012
  • Retinitis Pigmentosa(RP) is a common hereditary disease. While they have been normally living, those who have this symptom feel frustration and pain by the damage of visual acuity. At the national level, the loss of the economic activity due to the reduction of economically active population will be also greater. There is an urgent need for the base study that can provide the clinical prognosis information of RP disease. In this study, we suggest that it is possible to predict prognosis through the pattern classification of RP data. Statistical processing results through statistical software like SPSS(Statistical Package for the Social Service) were mainly applied for the conventional study in data analysis. However, machine learning and automatic pattern classification was applied to this study. SVM(Support Vector Machine) and other various pattern classifiers were used for it. The proposed method confirmed the possibility of prognostic prediction based on the result of automatically classified RP data by SVM classifier.

Biomarkers in Acute Kidney Injury (급성 신손상의 생물학적 표지자)

  • Cho, Min-Hyun
    • Childhood Kidney Diseases
    • /
    • v.15 no.2
    • /
    • pp.116-124
    • /
    • 2011
  • Acute kidney injury (AKI) can result in mortality or progress to chronic kidney disease in hospitalized patients. Although serum creatinine has long been used as the best biomarker for diagnosis of AKI, it has some clinical limitations, especially in children. New biomarkers are needed for early diagnosis, differential diagnosis, and reliable prediction of prognosis in AKI. Up to the present, candidate AKI biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin-18 (IL-18), livertype fatty acid-binding protein (L-FABP), matrix metalloproteinase-9 (MMP-9), and Nacetyl-$\ss$-D-glucosaminidase (NAG). However, whether these are superior to serum creatinine in the confirmation of diagnosis and prediction of prognosis in AKI is unclear. Further studies are needed for clinical application of these new biomarkers in AKI.