Hepatocellular carcinoma (HCC) is the sixth most common cancer and second leading cause of cancer-related death in the world. The aggressive but not always predictable pattern of HCC causes the limited treatment option and poorer outcome. Many researches had already proven the heterogeneity of HCC is one of the major challenges for treatment option and prognosis prediction. Molecular subtyping of HCC and selection of patient based on molecular profile can provide the optimization in the treatment and prognosis prediction. In this review, we have tried to summarize the molecular classification of HCC proposed by different valuable researches presented in the logistic way.
Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
Genomics & Informatics
/
v.16
no.4
/
pp.32.1-32.7
/
2018
Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.
The identification of genes that contribute to the prediction of prognosis in patients with cancer is one of the challenges in providing appropriate therapies. To find the prognostic genes, several classification models using gene expression data have been proposed. However, the prediction accuracy of cancer prognosis is limited due to the heterogeneity of cancer. In this paper, we integrate microarray data with biological network data using a modified PageRank algorithm to identify prognostic genes. We also predict the prognosis of patients with 6 cancer types (including breast carcinoma) using the K-Nearest Neighbor algorithm. Before we apply the modified PageRank, we separate samples by K-Means clustering to address the heterogeneity of cancer. The proposed algorithm showed better performance than traditional algorithms for prognosis. We were also able to identify cluster-specific biological processes using GO enrichment analysis.
Journal of the Korea Society of Computer and Information
/
v.20
no.2
/
pp.137-147
/
2015
This study proposes an algorithm for predicting breast cancer prognosis based on genetic network. We identify prognosis-specific network using gene expression data and PPI(protein-protein interaction) data. To acquire the network, we calculate Pearson's correlation coefficient(PCC) between genes in all PPI pairs using gene expression data. We develop a prediction model for breast cancer patients with estrogen-receptor-negative using the network as a classifier. We compare classification performance of our algorithm with existing algorithms on independent data and shows our algorithm is improved. In addition, we make an functionality analysis on the genes in the prognosis-specific network using GO(Gene Ontology) enrichment validation.
Transactions of the Korean Society of Automotive Engineers
/
v.18
no.1
/
pp.31-36
/
2010
Collecting all failures during life cycle of vehicle is not easy way because its life cycle is normally over 10 years. Warranty period can help gathering failures data because most customers try to repair its failures during warranty period even though small failures. This warranty data, which means failures during warranty period, can be a good resource to predict initial reliability and permanence reliability. However uncertainty regarding reliability prediction remains because this data is censored. University of Wuppertal and major auto supplier developed the reliability prognosis model considering censored data and this model introduce to predict reliability estimate further "failure candidate". This paper predicts reliability of telecommunications system in vehicle using the model and describes data structure for reliability prediction.
Journal of the Korea Society of Computer and Information
/
v.20
no.12
/
pp.91-99
/
2015
In this paper, we introduce the application of several currently-representative methods for mineral resources potential assessment on Geographic information system(hereinafter referred to as GIS), and combined with mineral resources potential assessment performed in China and with lead-zinc deposits taken as an example, summarized and divided minerals prediction and assessment models; on this basis, this paper presented the process of metallogenic prognosis based on MRAS platform, and made a simple analysis on existing problems.
This paper aimed to summarize the current situation of prognostication for patients with an expected survival of weeks or months, and to clarify future research priorities. Prognostic information is essential for patients, their families, and medical professionals to make end-of-life decisions. The clinician's prediction of survival is often used, but this may be inaccurate and optimistic. Many prognostic tools, such as the Palliative Performance Scale, Palliative Prognostic Index, Palliative Prognostic Score, and Prognosis in Palliative Care Study, have been developed and validated to reduce the inaccuracy of the clinician's prediction of survival. To date, there is no consensus on the most appropriate method of comparing tools that use different formats to predict survival. Therefore, the feasibility of using prognostic scales in clinical practice and the information wanted by the end users can determine the appropriate prognostic tool to use. We propose four major themes for further prognostication research: (1) functional prognosis, (2) outcomes of prognostic communication, (3) artificial intelligence, and (4) education for clinicians.
Retinitis Pigmentosa(RP) is a common hereditary disease. While they have been normally living, those who have this symptom feel frustration and pain by the damage of visual acuity. At the national level, the loss of the economic activity due to the reduction of economically active population will be also greater. There is an urgent need for the base study that can provide the clinical prognosis information of RP disease. In this study, we suggest that it is possible to predict prognosis through the pattern classification of RP data. Statistical processing results through statistical software like SPSS(Statistical Package for the Social Service) were mainly applied for the conventional study in data analysis. However, machine learning and automatic pattern classification was applied to this study. SVM(Support Vector Machine) and other various pattern classifiers were used for it. The proposed method confirmed the possibility of prognostic prediction based on the result of automatically classified RP data by SVM classifier.
Acute kidney injury (AKI) can result in mortality or progress to chronic kidney disease in hospitalized patients. Although serum creatinine has long been used as the best biomarker for diagnosis of AKI, it has some clinical limitations, especially in children. New biomarkers are needed for early diagnosis, differential diagnosis, and reliable prediction of prognosis in AKI. Up to the present, candidate AKI biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin-18 (IL-18), livertype fatty acid-binding protein (L-FABP), matrix metalloproteinase-9 (MMP-9), and Nacetyl-$\ss$-D-glucosaminidase (NAG). However, whether these are superior to serum creatinine in the confirmation of diagnosis and prediction of prognosis in AKI is unclear. Further studies are needed for clinical application of these new biomarkers in AKI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.