DOI QR코드

DOI QR Code

Biomarkers in Acute Kidney Injury

급성 신손상의 생물학적 표지자

  • Cho, Min-Hyun (Department of Pediatrics, Kyungpook National University School of Medicine)
  • 조민현 (경북대학교 의학전문대학원 소아과학교실)
  • Received : 2011.08.18
  • Accepted : 2011.09.05
  • Published : 2011.10.31

Abstract

Acute kidney injury (AKI) can result in mortality or progress to chronic kidney disease in hospitalized patients. Although serum creatinine has long been used as the best biomarker for diagnosis of AKI, it has some clinical limitations, especially in children. New biomarkers are needed for early diagnosis, differential diagnosis, and reliable prediction of prognosis in AKI. Up to the present, candidate AKI biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin-18 (IL-18), livertype fatty acid-binding protein (L-FABP), matrix metalloproteinase-9 (MMP-9), and Nacetyl-$\ss$-D-glucosaminidase (NAG). However, whether these are superior to serum creatinine in the confirmation of diagnosis and prediction of prognosis in AKI is unclear. Further studies are needed for clinical application of these new biomarkers in AKI.

Keywords

References

  1. Al-Ismaili Z, Palijan A, Zappitelli M. Biomarkers of acute kidney injury in children: discovery, evaluation, and clinical application. Pediatr Nephrol 2011;26:29-40. https://doi.org/10.1007/s00467-010-1576-0
  2. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 2007;71:1028-35. https://doi.org/10.1038/sj.ki.5002231
  3. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007;11:R31. https://doi.org/10.1186/cc5713
  4. Coca SG, Parikh CR. Urinary biomarkers for acute kidney injury: perspectives on translation. Clin J Am Soc Nephrol 2008;3:481-90. https://doi.org/10.2215/CJN.03520807
  5. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89-95. https://doi.org/10.1067/mcp.2001.113989
  6. Devarajan P. Neutrophil gelatinase-associated lipocalin--an emerging troponin for kidney injury. Nephrol Dial Transplant 2008;23:3737-43. https://doi.org/10.1093/ndt/gfn531
  7. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 2005;115:610-21.
  8. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase- associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005;365:1231-38. https://doi.org/10.1016/S0140-6736(05)74811-X
  9. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 2008;3:665-73. https://doi.org/10.2215/CJN.04010907
  10. Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH, 3rd, Ma Q, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol 2007;22:2089-95. https://doi.org/10.1007/s00467-007-0601-4
  11. Goldstein SL, Devarajan P. Progression from acute kidney injury to chronic kidney disease: a pediatric perspective. Adv Chronic Kidney Dis 2008;15:278-83. https://doi.org/10.1053/j.ackd.2008.04.007
  12. Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, et al. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 2006;21:989-94. https://doi.org/10.1007/s00467-006-0146-y
  13. Yilmaz A, Sevketoglu E, Gedikbasi A, Karyagar S, Kiyak A, Mulazimoglu M, et al. Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr Nephrol 2009;24:2387-92. https://doi.org/10.1007/s00467-009-1279-6
  14. Ichino M, Kuroyanagi Y, Kusaka M, Mori T, Ishikawa K, Shiroki R, et al. Increased urinary neutrophil gelatinase associated lipocalin levels in a rat model of upper urinary tract infection. J Urol 2009;181:2326-31. https://doi.org/10.1016/j.juro.2009.01.010
  15. Mitsnefes MM, Kathman TS, Mishra J, Kartal J, Khoury PR, Nickolas TL, et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol 2007;22:101-8. https://doi.org/10.1007/s00467-006-0244-x
  16. Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, et al. Urinary NGAL in premature infants. Pediatr Res 2008;64:423-8. https://doi.org/10.1203/PDR.0b013e318181b3b2
  17. Parravicini E. The clinical utility of urinary neutrophil gelatinase-associated lipocalin in the neonatal ICU. Curr Opin Pediatr 2010;22:146-50. https://doi.org/10.1097/MOP.0b013e3283369e78
  18. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002;62:237-44. https://doi.org/10.1046/j.1523-1755.2002.00433.x
  19. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 1998;273:4135-42. https://doi.org/10.1074/jbc.273.7.4135
  20. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 2004;286:F552-63. https://doi.org/10.1152/ajprenal.00285.2002
  21. Kuehn EW, Park KM, Somlo S, Bonventre JV. Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 2002;283:F1326-36.
  22. van Timmeren MM, Bakker SJ, Vaidya VS, Bailly V, Schuurs TA, Damman J, et al. Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol 2006;291:F456-64. https://doi.org/10.1152/ajprenal.00403.2005
  23. Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 2007;18:904-12. https://doi.org/10.1681/ASN.2006030221
  24. Liangos O, Tighiouart H, Perianayagam MC, Kolyada A, Han WK, Wald R, et al. Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 2009;14:423-31. https://doi.org/10.1080/13547500903067744
  25. Waikar SS, Bonventre JV. Biomarkers for the diagnosis of acute kidney injury. Nephron Clin Pract 2008;109:c192-7. https://doi.org/10.1159/000142928
  26. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 2008;73:863-9. https://doi.org/10.1038/sj.ki.5002715
  27. Wasilewska A, Taranta-Janusz K, Debek W, Zoch-Zwierz W, Kuroczycka-Saniutycz E. KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol 2011;26:579-86. https://doi.org/10.1007/s00467-011-1773-5
  28. Leslie JA, Meldrum KK. The role of interleukin-18 in renal injury. J Surg Res 2008;145:170-5. https://doi.org/10.1016/j.jss.2007.03.037
  29. Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest 2002;110:1083-91.
  30. Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 2006;6:1639-45. https://doi.org/10.1111/j.1600-6143.2006.01352.x
  31. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 2005;16:3046-52. https://doi.org/10.1681/ASN.2005030236
  32. Washburn KK, Zappitelli M, Arikan AA, Loftis L, Yalavarthy R, Parikh CR, et al. Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 2008;23:566-72.
  33. Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 2006;47:39-48. https://doi.org/10.1007/BF03194597
  34. Kimura H, Fujii H, Suzuki S, Ono T, Arakawa M, Gejyo F. Lipid-binding proteins in rat and human kidney. Kidney Int Suppl 1999;71:S159-62.
  35. Maatman RG, Van Kuppevelt TH, Veerkamp JH. Two types of fatty acid-binding protein in human kidney. Isolation, characterization and localization. Biochem J 1991;273:759-66.
  36. Nakata T, Hashimoto A, Hase M, Tsuchihashi K, Shimamoto K. Human heart-type fatty acid-binding protein as an early diagnostic and prognostic marker in acute coronary syndrome. Cardiology 2003;99:96-104. https://doi.org/10.1159/000069726
  37. Hofstra JM, Deegens JK, Steenbergen EJ, Wetzels JF. Urinary excretion of fatty acid-binding proteins in idiopathic membranous nephropathy. Nephrol Dial Transplant 2008;23:3160-5. https://doi.org/10.1093/ndt/gfn190
  38. Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS, et al. Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 2005;42:871-9. https://doi.org/10.1002/hep.20857
  39. Nakamura T, Sugaya T, Node K, Ueda Y, Koide H. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am J Kidney Dis 2006;47:439-44. https://doi.org/10.1053/j.ajkd.2005.11.006
  40. Negishi K, Noiri E, Doi K, Maeda-Mamiya R, Sugaya T, Portilla D, et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol 2009;174:1154-9. https://doi.org/10.2353/ajpath.2009.080644
  41. Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 2008;73:465-72. https://doi.org/10.1038/sj.ki.5002721
  42. Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, et al. Renal L-type fatty acid--binding protein in acute ischemic injury. J Am Soc Nephrol 2007;18:2894-902. https://doi.org/10.1681/ASN.2007010097
  43. Kato K, Sato N, Yamamoto T, Iwasaki YK, Tanaka K, Mizuno K. Valuable markers for contrast-induced nephropathy in patients undergoing cardiac catheterization. Circ J 2008;72:1499-505. https://doi.org/10.1253/circj.CJ-07-1006
  44. Fine LG, Bandyopadhay D, Norman JT. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int Suppl 2000;75:S22-6.
  45. Kang DH, Kanellis J, Hugo C, Truong L, Anderson S, Kerjaschki D, et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 2002;13:806-16.
  46. Noiri E, Tsukahara H. Parameters for measurement of oxidative stress in diabetes mellitus: applicability of enzyme-linked immunosorbent assay for clinical evaluation. J Investig Med 2005;53:167-75. https://doi.org/10.2310/6650.2005.00403
  47. Liu KD, Altmann C, Smits G, Krawczeski CD, Edelstein CL, Devarajan P, et al. Serum interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: a case-control study. Crit Care 2009;13:R104. https://doi.org/10.1186/cc7940
  48. Kwon O, Molitoris BA, Pescovitz M, Kelly KJ. Urinary actin, interleukin-6, and interleukin-8 may predict sustained ARF after ischemic injury in renal allografts. Am J Kidney Dis 2003;41:1074-87. https://doi.org/10.1016/S0272-6386(03)00206-3
  49. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 2009;4:1832-43. https://doi.org/10.2215/CJN.01640309
  50. Westhuyzen J, Endre ZH, Reece G, Reith DM, Saltissi D, Morgan TJ. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant 2003;18:543-51. https://doi.org/10.1093/ndt/18.3.543
  51. Gibey R, Dupond JL, Alber D, Leconte des Floris R, Henry JC. Predictive value of urinary N-acetyl-beta-D-glucosaminidase (NAG), alanine-aminopeptidase (AAP) and beta-2-microglobulin (beta 2M) in evaluating nephrotoxicity of gentamicin. Clin Chim Acta 1981;116:25-34. https://doi.org/10.1016/0009-8981(81)90165-0
  52. Basile DP, Fredrich K, Weihrauch D, Hattan N, Chilian WM. Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. Am J Physiol Renal Physiol 2004;286:F893-902. https://doi.org/10.1152/ajprenal.00328.2003
  53. Hatipoglu S, Sevketoglu E, Gedikbasi A, Yilmaz A, Kiyak A, Mulazimoglu M, et al. Urinary MMP-9/NGAL complex in children with acute cystitis. Pediatr Nephrol 2011;26:1263-8. https://doi.org/10.1007/s00467-011-1856-3
  54. Muramatsu Y, Tsujie M, Kohda Y, Pham B, Perantoni AO, Zhao H, et al. Early detection of cysteine rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int 2002;62:1601-10. https://doi.org/10.1046/j.1523-1755.2002.00633.x
  55. du Cheyron D, Daubin C, Poggioli J, Ramakers M, Houillier P, Charbonneau P, et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis 2003;42:497-506. https://doi.org/10.1016/S0272-6386(03)00744-3

Cited by

  1. A Novel Dorsal Slit Approached Non-Ischemic Partial Nephrectomy Method for a Renal Tissue Regeneration in a Mouse Model vol.15, pp.4, 2018, https://doi.org/10.1007/s13770-018-0123-0