• Title/Summary/Keyword: Prediction of Failure time

Search Result 306, Processing Time 0.029 seconds

Application of particle filtering for prognostics with measurement uncertainty in nuclear power plants

  • Kim, Gibeom;Kim, Hyeonmin;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1314-1323
    • /
    • 2018
  • For nuclear power plants (NPPs) to have long lifetimes, ageing is a major issue. Currently, ageing management for NPP systems is based on correlations built from generic experimental data. However, each system has its own characteristics, operational history, and environment. To account for this, it is possible to resort to prognostics that predicts the future state and time to failure (TTF) of the target system by updating the generic correlation with specific information of the target system. In this paper, we present an application of particle filtering for the prediction of degradation in steam generator tubes. With a case study, we also show how the prediction results vary depending on the uncertainty of the measurement data.

Development of the Reliability Evaluation Model and the Analysis Tool for Embedded Softwares (임베디드 소프트웨어 신뢰성 평가 모델 분석 툴 개발)

  • Seo, Jang-Hoon;Kim, Sun-Ho
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.109-119
    • /
    • 2008
  • Reliability of embedded softwares, as one of factors which affect system reliability, is the probability of failure-free software operation for a specified period of time in a specified environment. and Embedded software is different from general package software because hardware and operating system are tightly coupled to each other. Reliability evaluation models for embedded softwares currently used do not separate estimation and prediction models clearly, and even a standard model has not been proposed yet. In this respect, we choose a reliability estimation model suitable for embedded softwares among software evaluation models being used, and modified the model so as to accomodate recent software environments. In addtion, based on the model, the web-based reliability prediction tool RPX is developed. Finally, an embedded software is analyzed using the tool.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Reliability Prediction of High Performance Mooring Platform in Development Stage Using Safety Integrity Level and MTTFd (안전무결성 수준 및 MTTFd를 활용한 개발단계의 고성능 지상체 신뢰도 예측 방안)

  • Min-Young Lee;Sang-Boo Kim;In-Hwa Bae;So-Yeon Kang;Woo-Yeong Kwak;Sung-Gun Lee;Keuk-Ki Oh;Dae-Rim Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.609-618
    • /
    • 2024
  • System reliability prediction in the development stage is increasingly crucial to reliability growth management to satisfy its target reliability, since modern system usually takes a form of complex composition and various complicated functions. In most cases of development stage, however, the information available for system reliability prediction is very limited, making it difficult to predict system reliability more precisely as in the production and operating stages. In this study, a system reliability prediction process is considered when the reliability-related information such as SIL (Safety Integrity Level) and MTTFd (Mean Time to Dangerous Failure) is available in the development stage. It is suggested that when the SIL or MTTFd of a system component is known and the field operational data of similar system is given, the reliability prediction could be performed using the scaling factor for the SIL or MTTFd value of the component based on the similar system's field operational data analysis. Predicting a system reliability is then adjusted with the conversion factor reflecting the temperature condition of the environment in which the system actually operates. Finally, the case of applying the proposed system reliability prediction process to a high performance mooring platform is dealt with.

Evaluation of Service life for a Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 구조 수명 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, the effect of the natural aging on the strength distribution and structural service life of a Filament Wound (FW) composite pressure vessel was studied. The fiber failure strain, which is varied significantly, was considered as the design random variable and the strength analysis was carried out by probabilistic numerical approach. The progressive failure analysis technique and the First Order Reliability Method (FORM) were embedded in this numerical model. As the calculation results, the probability of failure was obtained for each aging time steps and it is found that the strength degradation in FW composite pressure vessel, due to the natural aging, appears within 10 year-aging-time. As an example of the life prediction under natural aging using arbitrary laminated model, the service lifetime of 13 years was predicted based on the probability of failure of 2.5% and the design pressure of 3,250 psi.

Development Direction of Reliability-based ROK Amphibious Assault Vehicles (신뢰성 기반 한국군 차기 상륙돌격장갑차 발전방향)

  • Baek, Ilho;Bong, Jusung;Hur, Jangwook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.14-22
    • /
    • 2021
  • A plan for the development of reliability-based ROK amphibious assault vehicles is proposed. By analyzing the development case of the U.S. EFV, considerations for the successful development of the next-generation Korea Forces amphibious assault vehicle are presented. If the vehicle reliability can be improved to the level of the fourth highest priority electric unit for power units, suspensions, decelerators, and body groups, which have the highest priority among fault frequency items, a system level MTBF of 36.4%↑ can be achieved, and the operational availability can be increased by 3.5%↑. The next-generation amphibious assault vehicles must fulfill certain operating and performance requirements, the underlying systems must be built, and sequencing of the hybrid engine and the modular concept should be considered. Along with big-data- and machine-learning-based failure prediction, machine maintenance based on augmented reality/virtual reality and remote maintenance should be used to improve the ability to maintain combat readiness and reduce lifecycle costs.

A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading (폭발하중을 받는 콘크리트 보의 요소의존성 최소화 인장기준식)

  • Kwak, Hyo-Gyoung;Gang, HanGul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • A tensile failure criterion that can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept is introduced, and conventional plasticity based damage models for concrete such as CSC model and HJC model, which are generally used for the blast analyses of concrete structures, are compared with orthotropic model in blast test to verify the proposed criterion. The numerical prediction of the time-displacement relations in mid span of the beam during blast loading are compared with experimental results. Analytical results show that the numerical error is substantially reduced and the accuracy of numerical results is improved by applying a unique failure strain value determined according to the proposed criterion.

Accelerated Thermo-Mechanical Fatigue Life of Pb-Free Solder Joints for PZT Ceramic Resonator (PZT 세라믹 레조네이터 무연솔더 접합부의 열-기계적 피로 가속수명)

  • Hong, Won-Sik;Park, No-Chang;Oh, Chul-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2009
  • In this study, we optimized Pb-free Sn/Ni plating thickness and conditions were optimized to counteract the environmental regulations, such as RoHS and ELV(End-of Life Vehicles). The $B_{10}$ life verification method was also suggested to have been successful when used with the accelerated life test(ALT) for assessing Pb-free solder joint life of piezoelectric (PZT) ceramic resonator. In order to evaluate the solder joint life, a modified Norris-Landzberg equation and a Coffin-Manson equation were utilized. Test vehicles that were composed of 2520 PZT ceramic resonator on FR-4 PCB with Sn-3.0Ag-0.5Cu for ALT were manufactured as well. Thermal shock test was conducted with 1,500 cycles from $(-40{\pm}2)^{\circ}C$ to $(120{\pm}2)^{\circ}C$, and 30 minutes dwell time at each temperature, respectively. It was discovered that the thermal shock test is a very useful method in introducing the CTE mismatch caused by thermo-mechanical stress at the solder joints. The resonance frequency of test components was measured and observed the microsection views were also observed to confirm the crack generation of the solder joints.

Health prognostics of stator Windings in Water-Cooled Generator using Fick's second law (Fick's second law 를 이용한 수냉식 발전기 고정자 권선의 건전성 예지)

  • Youn, Byeng D.;Jang, Beom-Chan;Kim, Hee-Soo;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.533-538
    • /
    • 2014
  • Power generator is one of the most important component of electricity generation system to convert mechanical energy to electrical energy. I t designed robustly to maintain high system reliability during operation time. But unexpected failure of the power generator could happen and it cause huge amount of economic and social loss. To keep it from unexpected failure, health prognostics should be carried out In this research, We developed a health prognostic method of stator windings in power generator with statistical data analysis and degradation modeling against water absorption. We divided whole 42 windings into two groups, absorption suspected group and normal group. We built a degradation model of absorption suspected winding using Fick's second law to predict upcoming absorption data. Through the analysis of data of normal group, we could figure out the distribution of data of normal windings. After that, we can properly predict absorption data of normal windings. With data prediction of two groups, we derived upcoming Directional Mahalanobis Distance (DMD) of absorption suspected winding and time vs DMD curve. Finally we drew the probability distribution of Remaining Useful Life of absorption suspected windings.

  • PDF

Rating and Lifetime Prediction of a Bridge with Maintenance (유지관리보수가 된 교량의 내하력평가 및 잔존수명 예측)

  • Seung-Ie Yang;Han-Jung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.108-115
    • /
    • 2003
  • Bridges are rated at two levels by either Load Factor Design (LFD) or Allowable Stress Design (ASD). The lower level rating is called Inventory Rating and the upper level rating is called Operating Rating. To maintain bridges effectively, there is an urgent need to assess actual bridge loading carrying capacity and to predict their remaining life from a system reliability viewpoint. The lifetime functions are introduced and explained to predict the time-dependent failure probability. The bridge studied in this paper was built 30 years ago in rural area. For this bridge, the load test and rehabilitation were conducted. The time-dependent system failure probability is predicted with or without rehabilitation. As a case study, an optional rehabilitation is suggested, and fir this rehabilitation, load rating is computed and the time-dependent system failure probability is predicted. Based on rehabilitation costs and extended service lifes, the optimal rehabilitation is suggested.