• Title/Summary/Keyword: Prediction of Concrete Strength

Search Result 737, Processing Time 0.029 seconds

Machine learning in concrete's strength prediction

  • Al-Gburi, Saddam N.A.;Akpinar, Pinar;Helwan, Abdulkader
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete's compressive strength is widely studied in order to understand many qualities and the grade of the concrete mixture. Conventional civil engineering tests involve time and resources consuming laboratory operations which results in the deterioration of concrete samples. Proposing efficient non-destructive models for the prediction of concrete compressive strength will certainly yield advancements in concrete studies. In this study, the efficiency of using radial basis function neural network (RBFNN) which is not common in this field, is studied for the concrete compressive strength prediction. Complementary studies with back propagation neural network (BPNN), which is commonly used in this field, have also been carried out in order to verify the efficiency of RBFNN for compressive strength prediction. A total of 13 input parameters, including novel ones such as cement's and fly ash's compositional information, have been employed in the prediction models with RBFNN and BPNN since all these parameters are known to influence concrete strength. Three different train: test ratios were tested with both models, while different hidden neurons, epochs, and spread values were introduced to determine the optimum parameters for yielding the best prediction results. Prediction results obtained by RBFNN are observed to yield satisfactory high correlation coefficients and satisfactory low mean square error values when compared to the results in the previous studies, indicating the efficiency of the proposed model.

Prediction of concrete strength using serial functional network model

  • Rajasekaran, S.;Lee, Seung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.83-99
    • /
    • 2003
  • The aim of this paper is to develop the ISCOSTFUN (Intelligent System for Prediction of Concrete Strength by Functional Networks) in order to provide in-place strength information of the concrete to facilitate concrete from removal and scheduling for construction. For this purpose, the system is developed using Functional Network (FN) by learning functions instead of weights as in Artificial Neural Networks (ANN). In serial functional network, the functions are trained from enough input-output data and the input for one functional network is the output of the other functional network. Using ISCOSTFUN it is possible to predict early strength as well as 7-day and 28-day strength of concrete. Altogether seven functional networks are used for prediction of strength development. This study shows that ISCOSTFUN using functional network is very efficient for predicting the compressive strength development of concrete and it takes less computer time as compared to well known Back Propagation Neural Network (BPN).

Prediction model of resistivity and compressive strength of waste LCD glass concrete

  • Wang, Chien-Chih
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2017
  • The purpose of this study is to establish a prediction model for the electrical resistivity ($E_r$) of self-consolidating concrete by using waste LCD (liquid crystal display) glass as part of the fine aggregate and then, to analyze the results obtained from a series of laboratory tests. A hyperbolic function is used to perform nonlinear multivariate regression analysis of the electrical resistivity prediction model, with parameters such as water-binder ratio (w/b), curing age (t) and waste glass content (G). Furthermore, the relationship of compressive strength and electrical resistivity of waste LCD glass concrete is also found by a logarithm function, while compressive strength is evaluated by the electrical resistivity of non-destructive testing (NDT). According to relative regression analysis, the electrical resistivity and compressive strength prediction models are developed, and the results show that a good agreement is obtained using the proposed prediction models. From the comparison between the predicted analysis values and test results, the MAPE value of electrical resistivity is 17.0-18.2% and less than 20%, the MAPE value of compressive strength evaluated by $E_r$ is 5.9-10.6% and nearly less than 10%. Therefore, the prediction models established in this study have good predictive ability for electrical resistivity and compressive strength of waste LCD glass concrete. However, further study is needed in regard to applying the proposed prediction models to other ranges of mixture parameters.

Prediction model for the hydration properties of concrete

  • Chu, Inyeop;Amin, Muhammad Nasir;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.377-392
    • /
    • 2013
  • This paper investigates prediction models estimating the hydration properties of concrete, such as the compressive strength, the splitting tensile strength, the elastic modulus,and the autogenous shrinkage. A prediction model is suggested on the basis of an equation that is formulated to predict the compressive strength. Based on the assumption that the apparent activation energy is a characteristic property of concrete, a prediction model for the compressive strength is applied to hydration-related properties. The hydration properties predicted by the model are compared with experimental results, and it is concluded that the prediction model properly estimates the splitting tensile strength, elastic modulus, and autogenous shrinkage as well as the compressive strength of concrete.

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder

  • Bazrafkan, Aryan;Habibi, Alireza;Sayari, Arash
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.463-478
    • /
    • 2020
  • Multiple mathematical modeling for prediction of slump, compressive strength and depth of water penetration at 28 days were performed using statistical analysis for the concrete containing waste limestone powder as partial replacement of sand obtained from experimental program reported in this research. To extract experimental data, 180 concrete cubic samples with 20 different mix designs were investigated. The twenty non-linear regression models were used to predict each of the concrete properties including slump, compressive strength and water depth penetration of concrete with waste limestone powder. Evaluation of the models using numerical methods showed that the majority of models give acceptable prediction with a high accuracy and trivial error rates. The 15-term regression models for predicting the slump, compressive strength and water depth were found to have the best agreement with the tested concrete specimens.

Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning

  • Yunpeng Zhao;Dimitrios Goulias;Setare Saremi
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.233-246
    • /
    • 2023
  • Accurate prediction of concrete compressive strength can minimize the need for extensive, time-consuming, and costly mixture optimization testing and analysis. This study attempts to enhance the prediction accuracy of compressive strength using stacking ensemble machine learning (ML) with feature engineering techniques. Seven alternative ML models of increasing complexity were implemented and compared, including linear regression, SVM, decision tree, multiple layer perceptron, random forest, Xgboost and Adaboost. To further improve the prediction accuracy, a ML pipeline was proposed in which the feature engineering technique was implemented, and a two-layer stacked model was developed. The k-fold cross-validation approach was employed to optimize model parameters and train the stacked model. The stacked model showed superior performance in predicting concrete compressive strength with a correlation of determination (R2) of 0.985. Feature (i.e., variable) importance was determined to demonstrate how useful the synthetic features are in prediction and provide better interpretability of the data and the model. The methodology in this study promotes a more thorough assessment of alternative ML algorithms and rather than focusing on any single ML model type for concrete compressive strength prediction.

Prediction of Mechanical Properties of Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 콘크리트의 재료역학적 성질의 예측)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.173-178
    • /
    • 2000
  • New prediction model is investigated estimating splitting tensile strength and modulus of elasticity with curing temperature and aging. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values. New prediction model well estimated splittinge tensile strength and elastic modulus as well as compressive strength.

  • PDF

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

The Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Test Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정)

  • Kim, Myung-Sik;Jang, Hei-Suk;Beak, Dong-Il;Sin, Nam-Gyun;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.145-148
    • /
    • 2006
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, In this study, a strength test was carried out destructive test by means of core sampling and traditional test. Non-destructive test was conducted Schmidt hammer and ultra-sonic method, the experimental parameter were concrete age, curing condition, test method and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

  • PDF