• Title/Summary/Keyword: Prediction map

Search Result 570, Processing Time 0.024 seconds

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

Particulate Matter Rating Map based on Machine Learning with Adaboost Algorithm (기계학습 Adaboost에 기초한 미세먼지 등급 지도)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • Fine dust is a substance that greatly affects human health, and various studies have been conducted in this regard. Due to the human influence of particulate matter, various studies are being conducted to predict particulate matter grade using past data measured in the monitoring network of Seoul city. In this paper, predictive model have focused on particulate matter concentration in May, 2019, Seoul. The air pollutant variables were used to training such as SO2, CO, NO2, O3. The predictive model based on Adaboost, and training model was dividing PM10 and PM2.5. As a result of the prediction performance comparison through confusion matrix, the Adaboost model was more conformable for predicting the particulate matter concentration grade. Although air pollutant variables have a higher correlation with PM2.5, training model need to train a lot of data and to use additional variables such as traffic volume to predict more effective PM10 and PM2.5 distribution grade.

Mapping Poverty Distribution of Urban Area using VIIRS Nighttime Light Satellite Imageries in D.I Yogyakarta, Indonesia

  • KHAIRUNNISAH;Arie Wahyu WIJAYANTO;Setia, PRAMANA
    • Asian Journal of Business Environment
    • /
    • v.13 no.2
    • /
    • pp.9-20
    • /
    • 2023
  • Purpose: This study aims to map the spatial distribution of poverty using nighttime light satellite images as a proxy indicator of economic activities and infrastructure distribution in D.I Yogyakarta, Indonesia. Research design, data, and methodology: This study uses official poverty statistics (National Socio-economic Survey (SUSENAS) and Poverty Database 2015) to compare satellite imagery's ability to identify poor urban areas in D.I Yogyakarta. National Socioeconomic Survey (SUSENAS), as poverty statistics at the macro level, uses expenditure to determine the poor in a region. Poverty Database 2015 (BDT 2015), as poverty statistics at the micro-level, uses asset ownership to determine the poor population in an area. Pearson correlation is used to identify the correlation among variables and construct a Support Vector Regression (SVR) model to estimate the poverty level at a granular level of 1 km x 1 km. Results: It is found that macro poverty level and moderate annual nighttime light intensity have a Pearson correlation of 74 percent. It is more significant than micro poverty, with the Pearson correlation being 49 percent in 2015. The SVR prediction model can achieve the root mean squared error (RMSE) of up to 8.48 percent on SUSENAS 2020 poverty data.Conclusion: Nighttime light satellite imagery data has potential benefits as alternative data to support regional poverty mapping, especially in urban areas. Using satellite imagery data is better at predicting regional poverty based on expenditure than asset ownership at the micro-level. Light intensity at night can better describe the use of electricity consumption for economic activities at night, which is captured in spending on electricity financing compared to asset ownership.

Prediction of potential spread areas of African swine fever virus through wild boars using Maxent model

  • Lim, Sang Jin;Namgung, Hun;Kim, Nam Hyung;Oh, Yeonsu;Park, Yung Chul
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.54-61
    • /
    • 2022
  • Background: In South Korea, African swine fever virus (ASFV) has spread among wild boars through Gangwon-do to Dangyang-gun, Chungcheongbuk-do on the southern border of Gangwon-do. To prevent the spread of ASFV to African swine fever (ASF)-free areas, it is necessary to identify areas with a high probability of finding ASFV-infected carcasses and to reduce the density of wild boars in those areas. In this study, we described the propagation trend of ASFV among wild boars, constructed the habitat suitability maps for ASFV-infected carcasses, and suggested areas with a high probability of finding ASFV-infected carcasses and an important route of ASFV transmission. Results: Despite the active quarantine policies in Korea to prevent the spread of ASFV through wild boars, there was no significant difference in the monthly average of number of ASFV-infected carcasses observed between 2020 and 2021. The ASFV-infected carcasses were found more in winter and spring (January to April). Since the first ASF outbreak in wild boars on October 2, 2019, the maximum width of ASFV-infected carcass distribution area was 222.7 km for about 26 months till November 20, 2021. The habitat suitability map, based on GPS coordinates of ASFV-infected wild boar carcasses, shows that highly detectable areas of ASFV-infected carcasses were sporadically dispersed in western and southwestern parts of Gangwon-do, and ranged from north to south of the province along the Baekdudaegan Mountains, whereas poorly detectable areas ranged along the north to the south in the middle parts of the province. Conclusions: Our suitability model, based on the GPS coordinates of ASFV-infected carcasses, identifies potential habitats where ASFV-infected carcasses are likely to be found and ponential routes where ASFV is likely to spread. Among ASF-free areas, the areas with high suitability predicted in this study should be given priority as survey areas to find ASFV-infected carcasses and hunting areas to reduce wild boar populations.

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.

The Architecture of an Intelligent Digital Twin for a Cyber-Physical Route-Finding System in Smart Cities

  • Habibnezhad, Mahmoud;Shayesteh, Shayan;Liu, Yizhi;Fardhosseini, Mohammad Sadra;Jebelli, Houtan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.510-519
    • /
    • 2020
  • Within an intelligent automated cyber-physical system, the realization of the autonomous mechanism for data collection, data integration, and data analysis plays a critical role in the design, development, operation, and maintenance of such a system. This construct is particularly vital for fault-tolerant route-finding systems that rely on the imprecise GPS location of the vehicles to properly operate, timely plan, and continuously produce informative feedback to the user. More essentially, the integration of digital twins with cyber-physical route-finding systems has been overlooked in intelligent transportation services with the capacity to construct the network routes solely from the locations of the operating vehicles. To address this limitation, the present study proposes a conceptual architecture that employs digital twin to autonomously maintain, update, and manage intelligent transportation systems. This virtual management simulation can improve the accuracy of time-of-arrival prediction based on auto-generated routes on which the vehicle's real-time location is mapped. To that end, first, an intelligent transportation system was developed based on two primary mechanisms: 1) an automated route finding process in which predictive data-driven models (i.e., regularized least-squares regression) can elicit the geometry and direction of the routes of the transportation network from the cloud of geotagged data points of the operating vehicles and 2) an intelligent mapping process capable of accurately locating the vehicles on the map whereby their arrival times to any point on the route can be estimated. Afterward, the digital representations of the physical entities (i.e., vehicles and routes) were simulated based on the auto-generated routes and the vehicles' locations in near-real-time. Finally, the feasibility and usability of the presented conceptual framework were evaluated through the comparison between the primary characteristics of the physical entities with their digital representations. The proposed architecture can be used by the vehicle-tracking applications dependent on geotagged data for digital mapping and location tracking of vehicles under a systematic comparison and simulation cyber-physical system.

  • PDF

Performance Comparison of Machine Learning Models for Grid-Based Flood Risk Mapping - Focusing on the Case of Typhoon Chaba in 2016 - (격자 기반 침수위험지도 작성을 위한 기계학습 모델별 성능 비교 연구 - 2016 태풍 차바 사례를 중심으로 -)

  • Jihye Han;Changjae Kwak;Kuyoon Kim;Miran Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.771-783
    • /
    • 2023
  • This study aims to compare the performance of each machine learning model for preparing a grid-based disaster risk map related to flooding in Jung-gu, Ulsan, for Typhoon Chaba which occurred in 2016. Dynamic data such as rainfall and river height, and static data such as building, population, and land cover data were used to conduct a risk analysis of flooding disasters. The data were constructed as 10 m-sized grid data based on the national point number, and a sample dataset was constructed using the risk value calculated for each grid as a dependent variable and the value of five influencing factors as an independent variable. The total number of sample datasets is 15,910, and the training, verification, and test datasets are randomly extracted at a 6:2:2 ratio to build a machine-learning model. Machine learning used random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN) techniques, and prediction accuracy by the model was found to be excellent in the order of SVM (91.05%), RF (83.08%), and KNN (76.52%). As a result of deriving the priority of influencing factors through the RF model, it was confirmed that rainfall and river water levels greatly influenced the risk.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

On the Determination of Slope Stability to Landslide by Quantification(II) (수량화(數量化)(II)에 의한 산사태사면(山沙汰斜面)의 위험도(危險度) 판별(判別))

  • Kang, Wee Pyeong;Murai, Hiroshi;Omura, Hiroshi;Ma, Ho Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.75 no.1
    • /
    • pp.32-37
    • /
    • 1986
  • In order to get the fundamental information that could be useful to judge the potentiality of occurrence of rapid shallow landslide in the objective slope, factors selected on Jinhae regions in Korea, where many landslides were caused by heavy rainfall of daily 465 mm and hourly 52mm in August 1979, was carried out through the multiple statistics of quantification method (II) by the electronic computer. The net system with $2{\times}2cm$ unit mesh was overlayed with the contour map of scale 1:5000. 74 meshes of landslides and 119 meshes of non-landslide were sampled out to survey the state of vegetative cover and geomorphological conditions, those were divided into 6 items arid 27 categories. As a result, main factors that would lead to landslide were shown in order of vegetation, slope type, slope position, slope, aspect and numbers of stream. Particularly, coniferous forest of 10 years old, concave slope and foot of mountain were main factors making slope instability. On the contrary, coniferous forest of 20-30 years old, deciduous forest, convex slope and summit contributed to the stable against Landslide. The boundary value between two groups of existence and none of landslides was -0.123, and its prediction was 72%. It was well predicted to divide into two groups of them.

  • PDF