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Abstract: Within an intelligent automated cyber-physical system, the realization of the autonomous 

mechanism for data collection, data integration, and data analysis plays a critical role in the design, 

development, operation, and maintenance of such a system. This construct is particularly vital for fault-

tolerant route-finding systems that rely on the imprecise GPS location of the vehicles to properly operate, 

timely plan, and continuously produce informative feedback to the user. More essentially, the integration 

of digital twins with cyber-physical route-finding systems has been overlooked in intelligent 

transportation services with the capacity to construct the network routes solely from the locations of the 

operating vehicles. To address this limitation, the present study proposes a conceptual architecture that 

employs digital twin to autonomously maintain, update, and manage intelligent transportation systems. 

This virtual management simulation can improve the accuracy of time-of-arrival prediction based on 

auto-generated routes on which the vehicle’s real-time location is mapped. To that end, first, an 

intelligent transportation system was developed based on two primary mechanisms: 1) an automated 

route finding process in which predictive data-driven models (i.e., regularized least-squares regression) 

can elicit the geometry and direction of the routes of the transportation network from the cloud of 

geotagged data points of the operating vehicles and 2) an intelligent mapping process capable of 

accurately locating the vehicles on the map whereby their arrival times to any point on the route can be 

estimated. Afterward, the digital representations of the physical entities (i.e., vehicles and routes) were 

simulated based on the auto-generated routes and the vehicles’ locations in near-real-time. Finally, the 

feasibility and usability of the presented conceptual framework were evaluated through the comparison 

between the primary characteristics of the physical entities with their digital representations. The 

proposed architecture can be used by the vehicle-tracking applications dependent on geotagged data for 

digital mapping and location tracking of vehicles under a systematic comparison and simulation cyber-

physical system. 

Keywords: Autonomous Route Finding, Digital Twin, Smart Cities, Intelligent Cyber-Physical 

Systems, Regularized Least-Squares Regression 

1. INTRODUCTION

The infrastructure of a smart city is founded upon a network of sensors and actuators embedded across 

the urban area, interacting with a multitude of wireless mobile devices (e.g., smartphones) under a 

responsive cloud-based network architecture [1]. Such a system requires an integrated cyber-physical 
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infrastructure with various software platforms for securely processing massive amounts of information. 

Major physical infrastructures in cities, such as transportation systems, are part of a spatial-temporal, 

large-scale connected system that bridges humans and technology through numerous sensors [2]. Yet 

conventional transportation systems have not achieved full coordination and optimization due to a lack 

of widespread interconnection, intercommunication, and interoperability [2]. In this regard, recent 

advancements in information technologies, such as the Internet of Things (IoT), cloud computing, and 

Cyber-Physical Systems (CPS), have provided the opportunity to address emerging challenges that arise 

in urban traffic systems. Accordingly, various monitoring devices and sensors can be installed on roads 

and vehicles to largely collect and timely process traffic information so as to provide real-time status 

models of vehicles [3]. Particularly, cyber-physical systems with their integrated computational and 

physical components can be leveraged to collect such big data, elucidate latent patterns from the data, 

and generate information-rich feedbacks to the users, effectively and efficiently. In the context of CPS, 

a digital twin of the system can address the challenges pertaining to poor data management and low 

prediction accuracy of the system. In this regard, a digital twin is distinguished from other simulation 

approaches in that it can synchronize digital constructs based on real assets, actively record data from 

the real environment, and sufficiently simulate real-world mechanisms and operations [4]. Given these 

qualities, integrating the intelligent digital twin with cyber-physical route-finding systems can provide 

the means for better system management and lead to a robust realization of autonomous mechanisms 

within transportation systems. 

Most of the transportation systems, particularly in the United States, benefit from easy and free 

accessibility to real-time Global Positioning System (GPS) data of public vehicles [5]. The embedded 

GPS devices in these “physical systems” send the location of the vehicles to a cloud server, which later 

can be publicly accessed through simple text-based queries, such as JSON. The retrieved data can be 

analyzed quickly using ubiquitous smartphones equipped with high-computing power and miniaturized 

high-density sensors [5]. Considering these capabilities, GPS data is widely utilized to estimate the 

arrival time of public vehicles, especially public buses [6–8]. However, these GPS-based systems are 

prone to several errors, such as location update delay or non-accurate location data. Notably, it would 

be challenging to estimate bus arrival time accurately due to traffic, dwell time at the bus stations and 

intersections, and unpredictable events, such as accidents or roadwork. On the other hand, not all the 

route information retrieved from public servers is accurate and up to date. In other words, although the 

server can provide various bus routes to the user, in most cases, the polygons representing these routes 

do not reflect their latest changes nor their correct directions. The accessibility to the precise geometries 

and directions of these routes is of utmost importance as most of the bus-arrival algorithms depend on 

the correct location and sequence of the constructing points [9].  

As a response to this challenge, this study attempts to develop a digital twin of a transportation system 

by proposing an intelligent cyber-physical route-finding conceptual framework capable of automatically 

construct and evaluate routes with accurate direction and geometry and continuously estimate the arrival 

time of the buses on those routes. The cyber-physical part of this framework is built upon two chief 

constructs, an automated route-finding process by which the polygon representing the route can be 

accurately inferred and a bus-arrival time estimation system that can intelligently monitor all the 

operating vehicles on a specific route and provide the user with a relatively accurate arrival time of the 

next closest vehicle on that route. Such a system obtains real-time GPS data from an online server and 

stores them on a workstation. Once a sufficient number of points are collected for each route, the system 

uses a least-square regression algorithm [10,11] to approximate the polygon representing the route. 

Afterward, it leverages the Google Map matching Application Programming Interface (API), in real-

time, to correct and verify the resultant route. This procedure ensures that the bus follows the logical 

path and has not left the route for a certain reason (e.g., gas filling). Finally, the retrieved route is 

discretized to small pieces upon which the location of the vehicle can be mapped, and the bus-arrival 

algorithm can be built. These automated route-construction and vehicle-mapping procedures will then 

be used to simulate and manage the physical entities of the systems. By implementing the proposed 

approach on an Android smartphone, a workstation, and a cloud server, the digital twins of the vehicles 

and the buses were constructed. Specific characteristics of these digital representations were compared 

with those obtained from their real-world entities to evaluate the performance of the cyber-physical 

system. The findings of this study can pave the way to establish a more efficient transportation system 

to improve the daily experience of city dwellers. The remainder of this paper is organized as follows. 

Section 2 introduces the background and motivation of this study. Section 3 outlines the overall 
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architecture of the proposed approach. Section 4 elaborates on the results of the framework 

implementation. Finally, Section 5 presents the discussion and conclusion. 

2. RESEARCH BACKGROUND

There is a great potential for CPS to address one of the main challenges of the people living in big 

cities, robust, reliable, and convenient transportation. The integration of big data analytics and high-

density sensed data enables policy-makers to accurately elicit beneficial information from the urban 

environments, various entities, and citizens. Cyber-physical systems are a synthesis of digital content 

and cyber methods with physical processes in which embedded computers control the physical processes 

using feedback loops, and physical processes affect computations [12]. One application of CPS in the 

transportation area is to transmit the information of physical transportation objects to the cyber system 

to achieve information communication, system coordination, and optimal decision-making control of 

the transportation system through the interaction and feedback between the physical and cyber systems 

[2]. In this regard, the digital twin of a system can be regarded as a virtual representation of a physical 

asset in a CPS, capable of reflecting its static and dynamic characteristics [4]. Essentially, a digital twin 

of an asset must inherit all the functionalities that the asset is able to perform in the real world. An 

intelligent digital twin, therefore, can potentially implement different machine learning algorithms on 

available models and data to optimize a variety of operations in a transportation system. 

The integration of GPS traces and smartphone applications for transit tracking systems has been 

among the new emerging real-time tracking technologies in the past few years [13–15]. The extensive 

research in the transit tracking systems and supporting applications is due to the availability of the all-

embracing, ubiquitous smartphones, affordable and accurate GPS, fast internet speeds, and optimized 

smartphones’ operating systems, such as the latest versions of Android and IOS. Interestingly, not only 

smartphones provide the users with adequate computational power for running these types of tracking-

based applications, but the availability of powerful and well-known APIs such as Google map API 

enhances the accuracy and usability of such systems as well. Generally, the architects of such systems 

rely on three key components, namely Automatic Vehicle Locator (AVL), online server, and smartphone 

devices [13]. Although the exhibition of real-time vehicle’s positions on digital maps, based on their 

AVL GPS data, is exceptionally informative to the users and works well with the current technologies, 

the accurate estimation of the vehicle’s arrival time would be hard to accomplish. The main obstacles to 

correctly estimating bus arrival time are the fluctuation of delay times at intersections, dwell time at 

stops, and travel speed of the operating vehicles. To overcome these barriers, numerous studies started 

to implement various efficient techniques such as deep learning and neural network into the AVL transit 

systems [16–20].  

Following the trend towards new arrival time predicting approaches, parallel to the manifestation of 

new transit tracking systems exploiting smartphones, researchers started to present innovative vehicle 

arrival time algorithms mostly concentrated on bus tracking applications [13,18,19]. In 2010, 

Thiagarajan et al. presented a cooperative transit tracking system that significantly lowers the commuter 

wait time. With the help of power-efficient and resourceful algorithms pertaining to activity 

classification, route matching, and underground vehicle tracking, they were able to reduce the wait time 

by more than 2 minutes, with only 5 percent of the riders using such a system [19]. Biagioni et al. 

presented smartphones as cheap AVLs, alternative to more costly GPS devices, that resulted in a cost-

efficient arrival estimating application [13]. Besides, as mentioned above, with the rise of new machine 

learning techniques, some of these prediction algorithms have been accustomed to the machine learning 

models trained by collecting data from the vehicles operating on the known routes. For example, by 

collecting data from the bus transit system in Sao Paulo, Brazil, and subsequently utilizing machine 

learning techniques, Nissimoff was able to predict the bus arrival time with acceptable accuracy [18]. 

Similar research presented Support Vector Machines (SVM) as a feasible and applicable technique to 

predict bus arrival time in China. However, Bin et al. stated that the SVM approach for predicting bus 

arrival time works more accurately if the real-time data from traffic surveillance systems are available 

[16].  

By considering the aforementioned techniques in predicting the bus arrival time, a significant number 

of studies utilized the routes of the network as a known unchanged polygon by which the location of the 

vehicle could be mapped correctly on the digital map [21–25]. However, in many cases, the availability 

of the updated route geometry information is costly and time-consuming, even though the operating 

vehicles’ locations can be retrieved seamlessly and with short interval time. Bearing in mind these 
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crucial caveats in designing AVL tracking-based applications, one might think of an approach that would 

exploit real-time GPS data of the operating vehicles on a specific route and indirectly draw the 

corresponding route. If drawn correctly, the information about the geometry of the route, and perhaps 

the direction of the path, would always be updated with minimum maintenance cost. This is a 

fundamental pre-processing step for these types of transit tracking systems and many other tracking-

based ones. To that end, numerous studies offered map-matching algorithms that would use GPS data 

of the operating vehicle as input and present the geometry data of the route as an output [26–28]. In 

terms of accuracy, by introducing innovative approaches, some of these map-matching techniques vastly 

surpass others [29,30]. Lou et al. proposed a map-matching algorithm, “ST-Matching,” for low-

sampling-rate GPS data that outperforms other famous techniques such as Average-Frechet-Distance 

(AFD) [31] and incremental algorithms [27]. In their ST-Matching algorithm, the candidate points are 

selected based on the spatial analysis of geometric and topological information of the road network, 

which later will be used to “logically” match the selected points on the digital map [30]. Another critical 

factor in the cost-effective tracking-based applications is the information about the precise geometry and 

direction of the roads on which the operating vehicles are being tracked. Fortunately, there are many 

services that provide such a service to the users; however, they are not free for more than a specific 

number of quarries per day. For instance, Google presents a robust and accurate map-matching API, free 

of charge for a certain number of quarries per day [32]. Therefore, designing a tracking algorithm to use 

a smaller number of quarries would be a wise approach to achieving cost and time-effective route-

updating and map-matching algorithms. To that end, the first step is the preparation of the raw cloud of 

data for exportation to the server. Using famous regression algorithms, it is possible to reduce the number 

of nominated points for exportation and, consequently, the number of quarries from the online server. 

By implementing map-matching techniques into a transit tracking system, the current study endeavors 

to (1) provide accurate routes’ geometry and direction to the users’ tracking applications, and (2) use a 

new simple arrival time algorithm that optimizes the time and data consumption for monitoring and 

subsequently predicting the arrival times of the buses. 

3. METHODOLOGY

3.1. Cyber-physical transportation system 

The first step towards generating the automated cyber-physical transportation system is to extract the 

route information from raw GPS data. In order to do that, a computer needs to retrieve the GPS locations 

of the desired vehicles (i.e., public buses) operating in a specific area from an online server. Upon 

successful server responses, useful information, such as vehicles’ latitude and longitude, speed, angle, 

identification number, and representing color, can be acquired and used for data analysis. For data 

analysis, the proposed algorithm must be able to perform the following tasks: 

1. Create vehicle objects based on the number of active vehicles operating on the route exploits

the server’s JSON response.

2. Logically update the location of the vehicle objects from the server based on their distance to

the target destination on the route.

3. Detect the operating hours by storing the time of the first and last vehicles operating in a day.

Once the cloud of GPS locations for each route is obtained, an appropriate analytical method must be 

selected to provide an approximate polygon representation of the route. To that end, the regularized 

least-square (with norm-2 penalty) regression algorithm is employed to determine the geometry of the 

route. It is worth mentioning that this step is essential in removing the GPS data collected while the bus 

was leaving the route (e.g., gas filling or end of operating hours). Subsequently, the filtered data points, 

which are passed from the regression (points within the penalty range) algorithm, would be uploaded to 

the Google server using Google’s map matching API. The response from the Google server should 

contain the accurate location points with which the precise polygon representation of the route can be 

constructed. Notably, the proposed technique requires the least number of queries from Google’s map 

matching API because only the “approved” location points would be sent for the map matching process. 

The next step is to identify the direction of the route based on the time tags of the data points retrieved 

earlier from the vehicles. As each GPS data point has a time tag from the retrieval time of the vehicle 

location, the sequences of the “approved” points for route construction can be identified. In this vein, 

the final points of a specific route in the system have time tags that determine that route’s direction. The 

last step towards an intelligent cyber-physical transportation system is to map the location of the 
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operating vehicles on their corresponding maps by which the arrival time of the vehicle can be estimated. 

This mapping procedure can be accomplished by finding the points on the route within the proximity of 

the near-real-time location of the vehicle and selecting the closest point that complies with the direction 

of the vehicle. Such compliance can be examined by considering the previous locations of the vehicle 

that can delineate the direction of the vehicle. Figure 1 provides the overall procedures of the proposed 

cyber-physical system for automated bus-arrival estimation. 

Figure 1. The overall procedure of the proposed cyber-physical route-finding system 

3.2. Case Study 

To evaluate the feasibility and efficiency of the proposed approach, a case study was designed based 

on Lincoln’s public transportation system. To construct the cloud of geotagged data points, the real-time 

locations of the vehicles operating on route #24 of the Lincoln transit network, StarTran, have been used. 

The StarTran server [33] is a public server on which the near-real-time locations of the operating vehicles 

are available. This server is used for the presented case study. The GPS information of the buses 

operating in Lincoln is available through JSON queries. Accordingly, thirty-six loops of these operating 

vehicles have been retrieved from the server to construct a specific route. Afterward, by considering the 

“average” feature for these points, the “outliers” have been identified and removed from the data set. In 

this case, more data collection from the operating vehicles would result in more accurate route 

construction and outlier detection. In the next step, all the points have been connected to form a polygon 

that represents the route. Finally, by following the real-time mapped location of an operating vehicle on 

route #24, the direction of the route has been determined. The following steps specify the procedures 

necessary to construct a directed route from a cloud of geotagged time series data: 

1. Create a polygon from the filtered points by using the least square regression algorithm.

2. Establish an accurate polygon by using the Google map matching API on the current polygon.

3. Equally, divide the accurate polygon into small lines to construct new polygon representation

points.

4. Set time 𝑇 to zero. Then, at each 𝛥𝑡𝑖 , find the closest point 𝑝 to the real-time location of the

operating vehicle and add the pair (𝑝𝑖 , 𝛥𝑡𝑖 ∗ 𝑖) to the polygon array list 𝑃𝑛 in which 𝑛 represents

the route number.

The resultant 𝑃𝑛 represents the route with the correct direction. After constructing the directed route,

the estimation of the arrival time of the operating vehicles on route #24 would be possible. To that end, 

the location of the buses should be correctly mapped on the route. In this case, the direction of the route 

plays an essential role in choosing the final mapped location. The reason lies behind the fact that the 

precision of the GPS devices mounted on the operating vehicles is not accurate enough to distinguish 
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between real locations of the buses on closed lines of the polygon representing the route. To overcome 

this barrier, the direction of the vehicle should be accounted for the correct mapping process (Figure 2). 

Accordingly, the necessary steps to correctly map the bus location on the route are as follows: 

1. Find the five closest points on the route to the vehicle location, sorting them based on their

distance, and finally storing them in the 𝑜𝑙𝑑_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 array

2. Wait for the new location of the vehicle from the server. Once retrieved, proceeding similar to

step one but storing the points in the 𝑛𝑒𝑤_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 array instead

3. For each of the points 𝑜𝑙𝑑_𝑐𝑙𝑜𝑠𝑒𝑠𝑡[𝑖]  in the 𝑜𝑙𝑑_𝑐𝑙𝑜𝑠𝑒𝑠𝑡  array, loop over the point

𝑛𝑒𝑤_𝑐𝑙𝑜𝑠𝑒𝑠𝑡[𝑗] in the 𝑛𝑒𝑤_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 array.

4. If the time label of the point from the old array is less than the one in the new array, and the

difference between the indices of points of the route is less than a threshold, accept the current

point as the mapped point and break from the for loops.

Figure 2. Schematic representation of the general idea to map the location of the bus on the constructed route 

The resultant route-finding and location-mapping algorithms serve as the backbone of the automated 

cloud-based transportation system. This system can then be visualized, managed, and evaluated through 

a constant comparison between the real-world buses and routes and their digital replica. Figure 3 

demonstrates the overall digital twin functionality of the proposed cyber-physical transportation system 

that suggests the feasibility of using such an approach to compare the results of the simulations in an 

attempt to manage and improve the system.  

Figure 3. The comparison between the proposed cyber-physical system and the actual situation by using the 

digital twin concept  
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4. RESULTS

Figure 4 shows the approximate route constructed by using the cloud of data. The data points 

visualized in this figure are the raw GPS data extracted from the cloud server. As can be seen, there are 

some outliers (red and blue points) in this figure. Figure 5 demonstrates the resultant polygon (pink line) 

superimposed on the 2D map. Such a shape was derived by employing the regularized least-squares 

regression algorithm (with norm-2 penalty). According to the settings of this algorithm, the ill-posed 

GPS points were rejected, and the route was constructed in an accurate shape.  

Moreover, in Figure 6, the result of the proposed algorithm (section 3) has been used to find the 

distance of the bus to the user’s pinpointed location, and consequently, estimate the arrival time by 

considering an average speed for urban operating buses. As can be seen, the vehicle’s location on the 

route can be mapped on either the left to right or right to the left route; however, the above algorithm 

ensures that the correct location mapping is executed in this case. The estimated arrival time can then 

be calculated based on a predetermined average time and the calculated distance between the mapped 

location of the vehicle and the destination. Not only the estimation time can help the user become aware 

of the arrival time of the bus, but the continuous monitoring capability ensures that the bus will not path 

a certain point on the map. This critical point can be better contemplated if such a system is compared 

with the time-of-arrival estimations that rely on time tables that are static and do not account for delays 

along the route on which the vehicle is operating. More importantly, because the location of the vehicle 

is mapped on the directed route, the inquiry about the location of the vehicle will follow a distance-based 

rational pattern. More specifically, the GPS information of the vehicle will not be retrieved from the 

server with a high refresh rate if the distance of the vehicle to the target location is larger than a threshold. 

This intelligent refresh rate algorithm offers an efficient, adaptive time-of-arrival that can immensely 

save battery and processing within smartphones.  

Figure 4. Results of the filtered points from the cloud of data (route #24) 

Figure 5. The final constructed directed route from the filtered cloud data.  
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Figure 6. Estimated arrival time based on the distance of the vehicle’s mapped location on route #24 

5. CONCLUSION

The incorporation of Cyber-physical Systems (CPS) in a transportation network has opened new doors 

in the routing and scheduling of the network. In this regard, an intelligent digital twin of the network 

can substantially elevate different operations across the CPS, such as data collection, data integration, 

and data analysis. To investigate the usability of this synthesis, this study proposes a conceptual 

architecture to integrate intelligent digital twin and cyber-physical route-finding system to improve the 

route generation and arrival time estimation of the transportation system. Using an innovative route 

construction methodology and algorithm, the result of this study suggests that the representation of the 

route geometry and direction is possible purely based on the real-time location of the operating vehicles 

on that route. In addition, it is indicated that the proposed bus arrival estimation algorithm can help the 

users to rely on the estimated time more confidently as the information will be updated regularly and 

intelligently. While the direction of the route is essential for the correct near-real-time location mapping 

of the operating vehicle, the calculated distance between the current mapped location of the bus and the 

user’s marked location is the desired value to be found. Upon successful calculation of the latter, an 

informative and smart vehicle monitoring application can be developed by which the user can be 

continuously notified about the distance of the vehicles to his/her marked location of the corresponding 

route. This study demonstrated the capability of intelligent cyber-physical systems to calculate such a 

value by merely relying on the information retrieved from the AVLs. By using an adaptive update rate 

that varies based on the distance of the vehicle to the user, the present study demonstrated the suitability 

of the proposed cyber-physical system for smartphones as the continuous monitoring of the vehicles’ 

locations can be computationally expensive and might consume a large amount of data. This work 

contributes to the existing body of knowledge by proposing an innovative framework for intelligent 

cyber-physical route-finding systems that can be managed, simulated, and updated under well-developed 

digital twins of the real-world transportation asset. 

This study demonstrated the capability of the digital twin as a comparison and management tool by 

which the performance of cyber-physical transportation systems can be evaluated and improved. This 

comparison can be performed at various levels of system operation, such as the accuracy of the system 

feedback, the characteristics of the auto-generated routes, and the estimated arrival times. While this 

study proposed the idea and presented an intelligent cyber-physical system to backup that idea, the future 

study should exploit such potentials by more accurately simulating the physical transportation entities 

such as the location of the user and the travel time for each user. Also, more precise estimations of arrival 

time can be achieved by considering the number of turns and bus stops between the user and the vehicle’s 

mapped location. Moreover, by utilizing the time tag for the collected data points with which the route 

is constructed, the program can assign different speeds to different parts of the route. This can enhance 

the prediction of the arrival time to a great extent. Other possible enhancements would be considering 

the time of day, especially the rush hours, and Google’s online information of the traffic on the way. 
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