• Title/Summary/Keyword: Prediction Service

Search Result 1,092, Processing Time 0.031 seconds

Evaluating Distress Prediction Models for Food Service Franchise Industry (외식프랜차이즈기업 부실예측모형 예측력 평가)

  • KIM, Si-Joong
    • Journal of Distribution Science
    • /
    • v.17 no.11
    • /
    • pp.73-79
    • /
    • 2019
  • Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.

Response Time Prediction of IoT Service Based on Time Similarity

  • Yang, Huaizhou;Zhang, Li
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In the field of Internet of Things (IoT), smarter embedded devices offer functions via web services. The Quality-of-Service (QoS) prediction is a key measure that guarantees successful IoT service applications. In this study, a collaborative filtering method is presented for predicting response time of IoT service due to time-awareness characteristics of IoT. First, a calculation method of service response time similarity between different users is proposed. Then, to improve prediction accuracy, initial similarity values are adjusted and similar neighbors are selected by a similarity threshold. Finally, via a densified user-item matrix, service response time is predicted by collaborative filtering for current active users. The presented method is validated by experiments on a real web service QoS dataset. Experimental results indicate that better prediction accuracy can be achieved with the presented method.

Prediction model of service life for tunnel structures in carbonation environments by genetic programming

  • Gao, Wei;Chen, Dongliang
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.373-389
    • /
    • 2019
  • It is important to study the problem of durability for tunnel structures. As a main influence on the durability of tunnel structures, carbonation-induced corrosion is studied. For the complicated environment of tunnel structures, based on the data samples from real engineering examples, the intelligent method (genetic programming) is used to construct the service life prediction model of tunnel structures. Based on the model, the prediction of service life for tunnel structures in carbonation environments is studied. Using the data samples from some tunnel engineering examples in China under carbonation environment, the proposed method is verified. In addition, the performance of the proposed prediction model is compared with that of the artificial neural network method. Finally, the effect of two main controlling parameters, the population size and sample size, on the performance of the prediction model by genetic programming is analyzed in detail.

Service Life Prediction for Building Materials and Components with Stochastic Deterioration (추계적 열화모형에 의한 건설자재의 사용수명 예측)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. Based on a stochastic deterioration model, a performance based service life prediction method for building materials and components is developed. As a stochastic degradation model, a gamma process is considered and lifetime distribution and service life of a material are predicted using the degradation model. A numerical example is provided to illustrate the use of the proposed service life prediction method.

Service Life Prediction of Components or Materials Based on Accelerated Degradation Tests (가속열화시험에 의한 부품·소재 사용수명 예측에 관한 연구)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 2017
  • Purpose: Accelerated degradation tests can speed time to market and reduce the test time and costs associated with long term reliability tests to verify the required service life of a product or material. This paper proposes a service life prediction method for components or materials using an accelerated degradation tests based on the relationships between temperature and the rate of failure-causing chemical reaction. Methods: The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed and least square estimation is used to estimate model parameters from the degradation model. Results: Methods of obtaining acceleration factors and predicting service life using the degradation model are presented and a numerical example is provided. Conclusion: Service life prediction of a component or material is possible at an early stage of the degradation test by using the proposed method.

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

Evaluation of Distress Prediction Model for Food Service Industry in Korea : Using the Logit Analysis (국내 외식기업의 부실예측모형 평가 : 로짓분석을 적용하여)

  • Kim, Si-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.151-156
    • /
    • 2019
  • This study aims to develop a distress prediction model and to evaluate distress prediction power for the food services industry by using 2017 food service industry financial ratios. Samples were collected from 46 food service industries, and we extracted 14 financial ratios from them. The results show that, first, there are eight ratios (financial ratio, current ratio, operating income to sales, net income to assets, ratio of cash flows, income to stockholders' equity, rate of operating income, and total asset turnover) that can discriminate failures in food service industries and the top-level food service industries. Second, by using these eight financial ratios, the logit function classifies the top-level food service industries, and failures in the food service industry can be estimated by using logit analysis. The verification results as to accuracy in the estimated logit analysis indicate that the model's distress-prediction power is 89.1%.

An expanded Matrix Factorization model for real-time Web service QoS prediction

  • Hao, Jinsheng;Su, Guoping;Han, Xiaofeng;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3913-3934
    • /
    • 2021
  • Real-time prediction of Web service of quality (QoS) provides more convenience for web services in cloud environment, but real-time QoS prediction faces severe challenges, especially under the cold-start situation. Existing literatures of real-time QoS predicting ignore that the QoS of a user/service is related to the QoS of other users/services. For example, users/services belonging to the same group of category will have similar QoS values. All of the methods ignore the group relationship because of the complexity of the model. Based on this, we propose a real-time Matrix Factorization based Clustering model (MFC), which uses category information as a new regularization term of the loss function. Specifically, in order to meet the real-time characteristic of the real-time prediction model, and to minimize the complexity of the model, we first map the QoS values of a large number of users/services to a lower-dimensional space by the PCA method, and then use the K-means algorithm calculates user/service category information, and use the average result to obtain a stable final clustering result. Extensive experiments on real-word datasets demonstrate that MFC outperforms other state-of-the-art prediction algorithms.

Prediction and Causality Examination of the Environment Service Industry and Distribution Service Industry (환경서비스업과 물류서비스업의 예측 및 인과성 검정)

  • Sun, Il-Suck;Lee, Choong-Hyo
    • Journal of Distribution Science
    • /
    • v.12 no.6
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose - The world now recognizes environmental disruption as a serious issue when regarding growth-oriented strategies; therefore, environmental preservation issues become pertinent. Consequently, green distribution is continuously emphasized. However, studying the prediction and association of distribution and the environment is insufficient. Most existing studies about green distribution are about its necessity, detailed operation methods, and political suggestions; it is necessary to study the distribution service industry and environmental service industry together, for green distribution. Research design, data, and methodology - ARIMA (auto-regressive moving average model) was used to predict the environmental service and distribution service industries, and the Granger Causality Test based on VAR (vector auto regressive) was used to analyze the causal relationship. This study used 48 quarters of time-series data, from the 4th quarter in 2001 to the 3rd quarter in 2013, about each business type's production index, and used an unchangeable index. The production index about the business type is classified into the current index and the unchangeable index. The unchangeable index divides the current index into deflators to remove fluctuation. Therefore, it is easy to analyze the actual production index. This study used the unchangeable index. Results - The production index of the distribution service industry and the production index of the environmental service industry consider the autocorrelation coefficient and partial autocorrelation coefficient; therefore, ARIMA(0,0,2)(0,1,1)4 and ARIMA(3,1,0)(0,1,1)4 were established as final prediction models, resulting in the gradual improvement in every production index of both types of business. Regarding the distribution service industry's production index, it is predicted that the 4th quarter in 2014 is 114.35, and the 4th quarter in 2015 is 123.48. Moreover, regarding the environmental service industry's production index, it is predicted that the 4th quarter in 2014 is 110.95, and the 4th quarter in 2015 is 111.67. In a causal relationship analysis, the environmental service industry impacts the distribution service industry, but the distribution service industry does not impact the environmental service industry. Conclusions - This study predicted the distribution service industry and environmental service industry with the ARIMA model, and examined the causal relationship between them through the Granger causality test based on the VAR Model. Prediction reveals the seasonality and gradual increase in the two industries. Moreover, the environmental service industry impacts the distribution service industry, but the distribution service industry does not impact the environmental service industry. This study contributed academically by offering base line data needed in the establishment of a future style of management and policy directions for the two industries through the prediction of the distribution service industry and the environmental service industry, and tested a causal relationship between them, which is insufficient in existing studies. The limitations of this study are that deeper considerations of advanced studies are deficient, and the effect of causality between the two types of industries on the actual industry was not established.

Trends in Disaster Prediction Technology Development and Service Delivery (재난예측 기술 개발 및 서비스 제공 동향)

  • Park, Soyoung;Hong, Sanggi;Lee, Kangbok
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2020
  • This paper describes the development trends and service provision examples of disaster occurrence and spread prediction technology for various disasters such as tsunamis, floods, and fires. In terms of fires, we introduce the WIFIRE system, which predicts the spread of large forest fires in the United States, and the Metro21: Smart Cities Institute project, which predicts the risk of building fires. This paper describes the development trends in tsunami prediction technology in the United States and Japan using artificial intelligence (AI) to predict the occurrence and size of tsunamis that cause great damage to coastal cities in Japan, Indonesia, and the United States. In addition, it introduces the NOAA big data platform built for natural disaster prediction, considering that the use of big data is very important for AI-based disaster prediction. In addition, Google's flood forecasting system, domestic and overseas earthquake early warning system development, and service delivery cases will be introduced.