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Abstract 

 
Real-time prediction of Web service of quality (QoS) provides more convenience for web 
services in cloud environment, but real-time QoS prediction faces severe challenges, 
especially under the cold-start situation. Existing literatures of real-time QoS predicting ignore 
that the QoS of a user/service is related to the QoS of other users/services. For example, 
users/services belonging to the same group of category will have similar QoS values. All of 
the methods ignore the group relationship because of the complexity of the model. Based on 
this, we propose a real-time Matrix Factorization based Clustering model (MFC), which uses 
category information as a new regularization term of the loss function. Specifically, in order to 
meet the real-time characteristic of the real-time prediction model, and to minimize the 
complexity of the model, we first map the QoS values of a large number of users/services to a 
lower-dimensional space by the PCA method, and then use the K-means algorithm calculates 
user/service category information, and use the average result to obtain a stable final clustering 
result. Extensive experiments on real-word datasets demonstrate that MFC outperforms other 
state-of-the-art prediction algorithms. 
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1. Introduction 

As the number of services deployed in the cloud, more and more web services are available 
for users to choose. However, the quality of web services (QoS) with similar functions varies 
greatly. Therefore, users pay more attention to non-functional attributes (QoS) when they 
choose web services with corresponding functions [1]. In the ever-changing cloud 
environment, the QoS value cannot be guaranteed at all times. When the QoS value the 
working component service changes unexpectedly, it is necessary to find an appropriate 
candidate service (candidate service with the same function) for the current working 
component service, and the QoS value is a key indicator for judging whether it is appropriate. 
Therefore, predicting the QoS value of a candidate service has become an urgent problem to 
be solved. 

QoS prediction models are developing rapidly towards selecting candidate services [1-6]. 
For example, [1,3] use a model-based Collaborative Filtering (CF) method to predict the QoS 
values of atomic service. In particular, [1] proposes a real-time prediction model that takes 
into account the dynamic factors of users and services joining or leaving, but it does not work 
well under cold-start. [3,6] propose a location-based model that uses the location category 
information of users and services to alleviate the cold-start problem, but it cannot work in 
real-time conditions. However, the service call by the user is a continuous operation, and the 
candidate service is also called through the continuous method. Only the real-time predicting 
model of the candidate service can be applied in practice. In fact, the most accurate method is 
the one which invokes web services one by one to test their QoS value in detail [2], but this 
method is impractical. 

In summary, the above methods do not fully consider the real-time and accuracy of the QoS 
prediction model. However, the web services deployed in the cloud environment require high 
QoS values, and the QoS prediction methods of candidate services need to meet the following 
condition: 

1.Real-time: The QoS of web service that exist the ever-changing and developmental cloud 
environment will change in different time periods, because of the impact of dynamic network 
condition and different server workloads. 

2.Accuracy: QoS prediction methods must be accurate in cold-start environment, 
otherwise unreliable QoS prediction may lead to wrong service when users invoke service or 
component services call next service. 

3.Extensibility: In a dynamic cloud environment, new services with different QoS may 
become available, and existing candidate services may be stopped by service providers too. 
With user frequently leaving or joining, the QoS predicting methods needs to have great 
performance to adapt new users and new services, and can perform prediction steps steadily. 

Based on these three points, we propose an extended matrix factorization model (MFC) for 
real-time web service QoS prediction, as shown in Fig. 1. The essential difference from the 
task studied in [1,3] is that our work focus on predicting the cold-start QoS value of each 
successive candidate service. Our method is inspired by CF technology [6] and K-means 
algorithm [7]. Specifically, in terms of model accuracy, in order to alleviate the cold-start 
problem, we use user/service category group information. Because users/services belonging to 
the same category group will have similar QoS values, the QoS flow of the web service is first 
clustered from the user and service levels to obtain user group category and service category 
group information. In terms of the real-time performance of the model, we first perform 
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dimensionality reduction processing (such as PCA method) on users and services before 
clustering them to ensure the efficiency of clustering and reduce the complexity of the model. 
In terms of the scalability of the model, based on the traditional Matrix Factorization model, 
we first use data conversion technology, online learning technology and adaptive weight 
technology to expand it into a real-time matrix factorization model, and then incorporate 
user/service group category information, to improving prediction accuracy. 

1.Building group category in real-time QoS matrix data. User group category and service 
group category are obtained by Principal Component Analysis (PCA)[24] and K-means 
algorithm. And the information of group category is used to modeling a new regularization 
term in matrix factorization model. 

2.We propose the MFC method which integrates clustering algorithm and matrix 
factorization model. Moreover, we conducted comprehensive experiments based on real QoS 
dataset, and the results demonstrate the advantage of MFC over several alternative methods, 
especially in extremely sparse QoS matrix data. 
 

 
Fig. 1. Overall approach of MFC 

2. Related work 
In cloud platform, web service have a large number of candidate services, so the prediction of 
its QoS has a hot research. The most successful method for predicting the QoS of web service 
is based on the Collaborative Filtering (CF) method [8]. 

CF can be divided into two different methods: content-based method [9] and model-based 
method [9, 10, 11] proposed a content-based hybrid method, which combines user-based and 
item-based technology to predict the reliability of SOS. In [10], the traditional content-based 
CF algorithm is extended by considering the user’s regional information. By predicting the 
reliability of a atomic web service, [12] using the QoS clustering method predict the reliability 
of composite services. MF-based method in model-based method has been applied in many 
studies because of its excellent prediction performance [1,3]. In [8], compared the 
content-based method and model-based method, obtaining: the model-based is better than the 
content-based method in predicting accuracy index. 

Most of the CF methods on predicting QoS consider only two dimensions: user and service, 
excluding the time information. Considering the periodicity of the QoS value of web services, 
the prediction accuracy can be significantly improved. [1] collects a large number of response 
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time throughput of QoS on continuous time slices, which provides a good experimental basis 
for time-aware QoS prediction. [3] propose an extended model-based CF algorithm for 
cold-start of QoS prediction. They cluster users and services according to latitude and 
longitude information of users and services and preference propagation method. They assume 
that when a user invokes a web service, users in nearby locations often encounter similar QoS, 
because local users may share the same network infrastructure. Based on the above 
assumptions, the new user’s QoS can be predicted by considering the historical calls of users 
geographically close to the new user. However, this work is offline without considering the 
time information. 

In order to overcome the limitations of previous works, we propose a expanded matrix 
factorization model for real-time web service QoS prediction, integrating clustering algorithm 
with matrix factorization model (MFC). The next section will give a detailed description of 
our method. 

3. MFC 
In this section, we introduce our method MFC, which include introduction of QoS attributes of 
web service and formulating the real-time QoS prediction problem. 

3.1 QoS attributes 
QoS is often used to evaluate the quality of non-functional features of web service. The QoS 
values are same for different users by service providers measured, such as the price and 
availability of services. However, due to unpredictable communication links and 
heterogeneous user environments, the QoS values observed by different users may vary 
greatly. Therefore, we mainly focus on the QoS values of observation from the perspective of 
users, such as response time and throughput. Rationally, the QoS values can be specified 
directly by service providers in Service Level Agreements (SLAs). But in practical 
applications, there are some factors: (1) Time-varing: the varying network environment, such 
as the Internet[13], and the different network delays of dynamic service workloads, which 
generate a lot of QoS attribute values the fluctuate greatly over time. (2) Location-specific: 
users from different locations usually observe different QoS values on the same service. 
Similarly, the geographic location distribution of services has a significant impact on the 
perceived QoS of users. These factors have a great impact on the quality of service, so 
real-time prediction QoS needs to take these factors into precise prediction. 

3.2 Matrix Factorization  
Matrix Factorization (MF) is the most widely used method to predict the QoS of a single web 
service [1,3]. MF [8] solves the Collaborative Filtering (CF) problem by constraining the rank 
of the QoS matrix, which uses mathematical methods to decompose a matrix into two or more 
sub-matrices. MF assumes that there are some low-dimensional potential factors to properly 
partition the matrix. These factors are thought to affect the QoS value implicitly, so the 
prediction of missing values can be achieved by multiplying the factorization matrix again. 

We use MF technology to predict the QoS value of a single web service. The historical QoS 
matrix of a user invoking a web service is a two-dimensional matrix, in which 𝑖𝑖𝑖𝑖 the elements 
are the QoS values, such as response time and throughput, which are observed when the 𝑖𝑖 user 
invokes the 𝑗𝑗 web service. The QoS matrix can be decomposed into user matrix 𝑈𝑈 and service 
matrix 𝑆𝑆 by MF. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021                           3917 

Historical QoS data is a sparse matrix 𝑅𝑅 composed of 𝑚𝑚 × 𝑛𝑛 users and web services. 
Matrix 𝑅𝑅 can be decomposed into user matrix 𝑈𝑈 ∈ 𝑅𝑅𝑚𝑚×𝑑𝑑 and service matrix 𝑆𝑆 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑. As 
shown in (1), 𝑑𝑑 is a potential factor. 

   𝑅𝑅 ≈ 𝑈𝑈𝑇𝑇 ⋅ 𝑆𝑆                                                              (1) 
In order to accurately predict the value of QoS, every element in the 𝑈𝑈 and 𝑆𝑆 must be 

carefully calculated. In order to complete the calculation, we resolve to minimize the 
following loss function, as shown in (2): 

 𝐿𝐿 =
1
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where the first term represents the square error between the observed 𝑅𝑅𝑖𝑖𝑖𝑖 and predicted 
values 𝑈𝑈𝑖𝑖𝑇𝑇𝑆𝑆𝑗𝑗. Especially, when 𝑅𝑅𝑖𝑖𝑖𝑖 observed, 𝐼𝐼𝑖𝑖𝑖𝑖 = 1, and 0 otherwise. The second term is the 
regularization term. It is to solve the occurrence of over-fitting phenomena, and the parameters 
𝜆𝜆 are important to control the regularization term. 

Gradient descent [18] is a common algorithm for deriving the solution of 𝑈𝑈 and 𝑆𝑆 by 
starting with random initialization and iterating until the convergence of the update process. 
After the 𝑈𝑈 and 𝑆𝑆 solution is obtained, the predicted QoS value is calculated by using the inner 
product. 

3.3 Other recommendations 
To simplify the problem description, we formalize the problem of real-time prediction of QoS, 
as shown in Fig. 2. 

(a)User, users call services; 
(b)Application, different applications can call certain services in different ways according 

to their functional requirements;  
(c)Candidate service, each component service has many candidate services, allowing 

dynamic replacement of existing services with another candidate service. Service invocation 
and adaptation actions are supported by the underlying middleware, which can track the call 
records of each service and record the corresponding QoS values perceived by users. 

(d)The QoS record section describes multiple QoS records from different users during 
historical service invocations. Each record present QoS value of user invoking service in its 
time slice. Generally, each user only invokes a small group of candidate services at a time, 
instead of many other services, which leads to the existence of unknown QoS values;  

(e)The collected QoS records can be further assembled into a 3D (user-service-time) QoS 
matrix, where the observed values are represented by numerical values, and the blanks are 
unknown. In order to make the best service adaptation decision, not only the real-time QoS 
information of work services but also the real-time QoS information of all candidate services 
are needed. Therefore, we formulate the real-time QoS prediction of candidate services as a 
problem, predicting the unknown QoS values of the current time slice under the given 
historical QoS records. Detailed description is as follows: 

Hypothesis, there are 𝑛𝑛 users and 𝑚𝑚 services. A QoS record 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚  present user 
𝑢𝑢𝑖𝑖 call service 𝑠𝑠𝑗𝑗 at time slice 𝑡𝑡. When value is observed, it is defined 𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡) = 1, 𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡) = 0 
when it is unknown. The unknown QoS values are expressed as {𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡𝑐𝑐)|𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡𝑐𝑐) = 0} at time 
slice 𝑡𝑡𝑐𝑐  , which predicted based on historical observations {𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡𝑐𝑐)|𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡𝑐𝑐) = 1, 𝑡𝑡 ∈
[𝑡𝑡1, … , 𝑡𝑡𝑐𝑐]} . 
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3.4 Modeling user groups and service groups 
In this section, users and services are clustered based on historical invoking records, and user 
categories and service categories are obtained. New regularization term is modeled according 
the categories information and added to real-time MF model for accurate QoS prediction. 
 

 
Fig. 2. The problem setting of online QoS prediction 

 
Clustering can effectively and directly aggregate users and services according to certain 

rules, such as according to geographical location, especially in real QoS dataset [1]. But for 
real QoS data, it has that the number of services is much larger than the number of users.  So 
we need to consider dimension reduction of service side, and consider the dimension of the 
QoS matrix, which its number of users is far less than the number of services. When clustering 
user side, the number of service is very large, service side data is needed to reduce the 
dimension for improving clustering computational efficiency. When clustering service side, 
there is no need to reduce dimensions because the number of users is far less than the number 
of services (if the number of users corresponding to the service is too large, it is also necessary 
to reduce the dimensionality of user side in clustering service to improve the clustering effect).       
Here we use the Principal Component Analysis (PCA)[14] method reducing dimension. 

Our clustering algorithm is summarized as shown in Fig. 3 and Table 1. First, we reduce 
the dimension of service side in QoS matrix data to cluster users with fewer features. And we 
cluster services with no reduce the dimension of user side. K-means algorithm is interpretable 
and easy to implement, so we use K-means algorithm to cluster users and services [25]. 
However, it is well known that the clustering results of K-means will be different each time 
[26]. This problem is related to the distribution of sample points. When the distribution of 
sample points is more dispersed, the difference will be larger. Especially, the points on the 
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edge of the class will be clustered into different classes in different clustering, which will lead 
to the non-uniqueness of clustering results. In order to avoid this problem, we repeat the 
clustering operation, and rounding off the different clustering results. The same method 
clustering service side. The number of repetitions of clustering users or services needs to be 
determined according to the number of users and services. The more the number of repetitions, 
the greater the number of repetitions. The concrete steps of our algorithm are shown in 
algorithm1. After PCA reduces the dimension of matrix, clustering users and services by 
k-means algorithm. 
 

 
Fig. 3. Algorithm for cluster users and services 

 
Table 1. Algorithm 1 Clustering users and services  

Algorithm 1 Clustering users and services 

Input: QoS matrix 
Procedure: 
1. Compute the mean value of QoS matrix on all time 

slices – mean QoS matrix 
2. Reduce the dimension of services side in mean QoS 

matrix by PCA, getting new mean QoS matrix. 
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       Compute the number of u(i) belong any group in 
clustering every time 
        i = i + 1 
        Get u(i) belong which user groups 
Get user groups 

4. Cluster services in mean QoS matrix by k-means 
algorithm (setting 100 service groups) 
Get ten times clustering results 
For j = 1 : number of column QoS 
       Compute the number of s(j) belong any group in 
clustering every time 
        J = j + 1 
        Get s(j) belong which service groups 
Get service groups 

Output: user groups and service groups 

 
After calculating the clustering results of users and services, we get the user groups and 

service groups. Next, we use clustering results to model new regularization terms, as shown in 
Equations (3) and (4): 

 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑈𝑈𝑖𝑖 − � 𝑤𝑤𝑎𝑎𝑈𝑈𝑎𝑎
𝑎𝑎∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖)
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Where 𝑈𝑈𝑖𝑖 ,𝑉𝑉𝑗𝑗 represent factor matrices of target users ans web service, respectively. 𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖) 

and . 𝑆𝑆𝐺𝐺𝑢𝑢(𝑗𝑗)  represent the group of classes of target user and web service, respectively. 𝑈𝑈𝑎𝑎 is 
a user 𝑎𝑎 that belong a group with target user 𝑖𝑖 and 𝑉𝑉𝑏𝑏 is a service 𝑏𝑏 that belong a group with 
target service  𝑗𝑗 . 𝑤𝑤𝑎𝑎 and 𝑤𝑤𝑏𝑏 are weights of user 𝑈𝑈𝑎𝑎 and service 𝑉𝑉𝑏𝑏, respectively. As shown in 
(5) and (6): 

 𝑤𝑤𝑎𝑎 =
𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑎𝑎)

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑐𝑐)𝑐𝑐∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖)
 (5)   

 

 𝑤𝑤𝑏𝑏 =
𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗, 𝑏𝑏)

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗,𝑑𝑑)𝑑𝑑∈𝑆𝑆𝐺𝐺𝑣𝑣(𝑗𝑗)
 (6)   

Where 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑎𝑎) represent similarity between user 𝑎𝑎  that belong a same group with target 
user 𝑖𝑖 and target user 𝑖𝑖. Equation (5) indicates that the more similar the user, the greater the 
impact on the prediction effect, and the same (6) has the same impact on the service. 

Specifically, these regularizations imply that the QoS value of the target user or web 
service should be close to that of the same group of users or web services. 

3.5 Clustering-based adaptive matrix factorization 
According to the regularization terms obtained in the previous section, a new regularization 
term is added to the basic MF real-time prediction QoS algorithm in this section, which makes 
our method better solve the cold-start and improve prediction accuracy. 
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MF[15] uses mathematical method to decompose a matrix into two or more sub-matrices. 
The prediction of missing values can be get by multiple sub-matrices. And real-time MF 
method is that sub-MF model of each time slice is connected by specific parameters. Unlike 
the basic real-time QoS prediction based on matrix factorization, our method in Fig. 1 
clustered the user-service history QoS values to get user categories and service categories, and 
then modeled a new regularization terms for predicting QoS. Specifically, Fig. 1 (a) QoS 
stream, the collected QoS data are first used as input of clustering algorithm in this method for 
(b); (b) Clustering user and service, which has given specific clustering operations in the 
previous section (section 4.2); (c) Online Updating, which sequentially sends the standard data 
transformation operation to the MF model for real-time updating. This is a continuous model 
training process with online learning technology; (d) Adaptive Matrix 
Factorization-Clustering. The Adaptive Matrix Factorization operation is the basic time 
iteration operation of MF. From (d) can be seen that AMF is the iteration of MF on continuous 
time slice, in which the model trained in the previous time slice is seamlessly used. To guide 
the next time slice; (e) Predicted QoS Matrix, real-time QoS prediction using the training 
model. 

4. Data transformation 
The real QoS values have different scores from recommendation systems. The scoring ranges 
in recommendation systems are small, such as 1~5. The range of changes in QoS values is 
wide, such as the response time ranges from 0~20 seconds, and the throughput ranges from 
0~7000kbps. In addition, compared with the score distribution, the distribution deviation of 
the QoS data is large and has a large variance as shown in Fig. 4, which doesn’t match the 
probability hypothesis of low rank matrix factorization. This type of data will reduce the 
accuracy of the prediction algorithm of MF[15]. 

In order to solve this problem, we apply Box-Cox to transform QoS data[16]. This method 
is used to stabilize the data variance and make the data more normal distribution to adapt to the 
MF model. Box-Cox transformation is rank-preserved, defined by (7): 

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥) = �(𝑥𝑥
𝜕𝜕 − 1) 𝜕𝜕⁄ ,   𝑖𝑖𝑖𝑖 𝜕𝜕 ≠ 0
log(𝑥𝑥) ,   𝑖𝑖𝑖𝑖 𝜕𝜕 = 0

 (7)   

The parameters 𝜕𝜕 control the degree of transformation. It should be noted that due to the 
monotonous non–decreasing nature of Box-Cox transformation, we have 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚)  and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) . 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 represent maximum and 
minimum QoS values respectively. 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum and minimum value after 
data transformation. After the conversion of the QoS data, it is mapped to the range [0,1], such 
as (8): 
 𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡) = (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡)� − 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚) (𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)�  (8)   

Where  𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) is QoS value under user 𝑢𝑢𝑖𝑖 , service 𝑆𝑆𝑗𝑗 and time slice 𝑡𝑡 conditions. 
In particular, when 𝜕𝜕 = 1  , Box-Cox data conversion was a common linear 

normalization.The distribution of QoS data after data conversion steps in shown in Fig. 5, 
which has a good effect for MF. 
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(a) Response time (s)                                      (b) Throughput (kbps) 

Fig. 4. Data distribution 

 
(a) Response time of transformed (s)            (b) Throughput of transformed  (kbps) 

Fig. 5. Transformed data distribution Data distribution  

5. Modeling 
The purpose of this section is to establish a complete real-time QoS prediction model based on 
MF and clustering. Real-time QoS modeling can be represented by the interaction between 
users and services, representing the QoS between users 𝑢𝑢𝑖𝑖  and services 𝑠𝑠𝑗𝑗 in time slice 𝑡𝑡 , as 
shown in (9): 
 𝑅𝑅�𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑈𝑈𝑖𝑖(𝑡𝑡)𝑇𝑇𝑆𝑆𝑗𝑗(𝑡𝑡) (9)   

In order to adapt to normalized QoS data 𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡)  , we use Logistic function 𝑔𝑔(𝑥𝑥) =
1 (1 + 𝑒𝑒−𝑥𝑥)⁄   to map 𝑅𝑅�𝑖𝑖𝑖𝑖(𝑡𝑡)  in the range [0,1]. Then by applying Equation (9) and equations 
(3) ,(4) of C part of III, we can define the loss function as shown in (10): 

 

𝐿𝐿(𝑡𝑡) =
1
2
�𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡)(𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡))2
𝑖𝑖,𝑗𝑗

+
𝜆𝜆
2
��‖𝑈𝑈𝑖𝑖(𝑡𝑡)‖22

𝑖𝑖

+ ��𝑆𝑆𝑗𝑗(𝑡𝑡)�
2
2

𝑗𝑗

�

+
𝛾𝛾
2�

��𝑈𝑈𝑖𝑖 − � 𝑤𝑤𝑎𝑎𝑈𝑈𝑎𝑎
𝑎𝑎∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖)

�

2

2

+ ��𝑉𝑉𝑗𝑗 − � 𝑤𝑤𝑏𝑏𝑉𝑉𝑏𝑏
𝑏𝑏∈𝑆𝑆𝐺𝐺𝑣𝑣(𝑗𝑗)

�

2

2

𝑗𝑗𝑖𝑖

� 

(10)   

Where 𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡) is 𝑔𝑔(𝑅𝑅�𝑖𝑖𝑖𝑖(𝑡𝑡)) . When 𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡) was observed, 𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡) = 1 . Other, 𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡) = 0. 
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However the traditional MF model minimizes the sum of squared errors and uses absolute 
error measures for prediction accuracy evaluation. In fact, the absolute error measure is not 
suitable for the evaluation of QoS prediction because of the wide range of QoS values. For 
example, for a given QoS value 𝑞𝑞𝑠𝑠1 = 1, 𝑞𝑞𝑠𝑠2 = 100 , the threshold is set to: 𝑞𝑞𝑠𝑠1 < 5, 𝑞𝑞𝑠𝑠2 >
90. There are now two predictions: (a) 𝑞𝑞𝑠𝑠1 = 8, 𝑞𝑞𝑠𝑠2 = 99 ; (b) 𝑞𝑞𝑠𝑠1 = 0.9,𝑞𝑞𝑠𝑠2 = 92 ; It can be 
seen that (a) there is a minimum MAE (mean square error), but it does not meet the threshold, 
while (b) meets the threshold, but the MAE is not as small as (a). Therefore, we need to 
minimize the relative error of the QoS prediction and derive the corresponding loss function as 
(11) 

 

𝐿𝐿(𝑡𝑡) =
1
2
�𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡)(

𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡)

)2
𝑖𝑖,𝑗𝑗

+
𝜆𝜆
2
��‖𝑈𝑈𝑖𝑖(𝑡𝑡)‖22

𝑖𝑖

+ ��𝑆𝑆𝑗𝑗(𝑡𝑡)�
2
2

𝑗𝑗

�

+
𝛾𝛾
2�

��𝑈𝑈𝑖𝑖 − � 𝑤𝑤𝑎𝑎𝑈𝑈𝑎𝑎
𝑎𝑎∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖)

�

2

2

+ ��𝑉𝑉𝑗𝑗 − � 𝑤𝑤𝑏𝑏𝑉𝑉𝑏𝑏
𝑏𝑏∈𝑆𝑆𝐺𝐺𝑣𝑣(𝑗𝑗)

�

2

2

𝑗𝑗𝑖𝑖

� 

(11)   

By summing up all historical time slices 𝐿𝐿(𝑡𝑡), the minimum global loss function is 𝐿𝐿 =
∑ 𝐿𝐿(𝑡𝑡)𝑡𝑡𝑐𝑐
𝑡𝑡=1 . 

6. Online study 
The gradient descent [17] method can be used to solve the above minimization problem. 
However, it is often used for offline work, so it can’t easily adapt to time varying QoS values. 
Online learning algorithms are needed to maintain continuous and incremental updates using 
sequentially observed QoS data. To this end, this section uses a widely used online learning 
algorithm: stochastic gradient descent (SGD) [17] to train our MFC model. For each QoS 
record (𝑡𝑡, 𝑢𝑢𝑖𝑖, 𝑠𝑠𝑗𝑗, 𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡)) observed by a user 𝑢𝑢𝑖𝑖 invoking a service 𝑠𝑠𝑗𝑗  in a time slice 𝑡𝑡, there is a 
point-by-point loss function, as shown in (12): 

 

Δ𝐿𝐿 =
1
2

(
𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖

)2 +
𝜆𝜆
2
�‖𝑈𝑈𝑖𝑖‖22 + �𝑆𝑆𝑗𝑗�2

2�

+
𝛾𝛾
2��

𝑈𝑈𝑖𝑖 − � 𝑤𝑤𝑎𝑎𝑈𝑈𝑎𝑎
𝑎𝑎∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖)

�

2

2

+ �𝑉𝑉𝑗𝑗 − � 𝑤𝑤𝑏𝑏𝑉𝑉𝑏𝑏
𝑏𝑏∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑗𝑗)

�

2

2

� 
(12)   

There are also 𝐿𝐿 = ∑ ∑ ∑ 𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡)Δ𝐿𝐿𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

𝑡𝑡𝑐𝑐
𝑡𝑡=1  , sum all observed QoS records. Our MFC 

model incrementally updates each observed QoS record (𝑡𝑡,𝑢𝑢𝑖𝑖, 𝑠𝑠𝑗𝑗, 𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡)) using rules, as shown 
in (13) and (14): 

 
𝑈𝑈𝑖𝑖 ← 𝑈𝑈𝑖𝑖 − 𝜂𝜂[�𝑔𝑔𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖�𝑔𝑔𝑖𝑖𝑖𝑖′ 𝑆𝑆𝑗𝑗 𝑟𝑟𝑖𝑖𝑖𝑖2� + 𝜆𝜆𝑈𝑈𝑖𝑖 + 𝛾𝛾(𝑈𝑈𝑖𝑖

− � 𝑤𝑤𝑎𝑎𝑈𝑈𝑎𝑎
𝑎𝑎∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖)

)] (13)   

 

 
𝑆𝑆𝑗𝑗 ← 𝑆𝑆𝑗𝑗 − 𝜂𝜂[�𝑔𝑔𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖�𝑔𝑔𝑖𝑖𝑖𝑖′ 𝑈𝑈𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖2� + 𝜆𝜆𝑆𝑆𝑗𝑗 + 𝛾𝛾(𝑉𝑉𝑗𝑗

− � 𝑤𝑤𝑏𝑏𝑉𝑉𝑏𝑏
𝑏𝑏∈𝑆𝑆𝐺𝐺𝑣𝑣(𝑗𝑗)

)] (14)   

Where 𝑔𝑔𝑖𝑖𝑖𝑖′  is 𝑔𝑔′(𝑈𝑈𝑖𝑖𝑇𝑇𝑆𝑆𝑗𝑗), and derivative of 𝑔𝑔(𝑥𝑥) is 𝑔𝑔′(𝑥𝑥) = 𝑒𝑒𝑥𝑥 (𝑒𝑒𝑥𝑥 + 1)2⁄  ,  𝜂𝜂 is to control 
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the learning rate of each interaction step. 
As shown in (a) and (c) of Fig. 1, whenever a new QoS record is observed, the user 𝑢𝑢𝑖𝑖 will 

change the feature vector 𝑈𝑈𝑖𝑖 slightly, while the service 𝑠𝑠𝑗𝑗 will change the feature vector 𝑆𝑆𝑗𝑗 
slightly. Online learning eliminates the need for retraining the entire model, enabling our MFC 
model to quickly adapt to new QoS observations and allowing easy integration of new users 
and services. 

However, the above online learning algorithm may not perform well under the high stirring 
rate of users (i.e., continuous joining or leaving). The convergence of the algorithm is 
controlled by learning rate 𝜂𝜂, but fixed 𝜂𝜂 help to quickly move them to the correct position. 
However, for user 𝑢𝑢1 call existing service 𝑠𝑠2 , the feature vectors 𝑆𝑆2 may have converged. 
When users 𝑢𝑢1 adjust the feature vectors of  services 𝑠𝑠2 , they have large prediction errors with 
non-convergent feature vectors, which may increase the prediction errors rather than reduce 
the prediction errors. Therefore, online predicting model also requires to resist the loss of users 
and services. 

In order to achieve this goal, we propose to use adaptive weights to control the step size 
when updating the model. Simply, accurate users should not move too much according to 
inaccurate services, inaccurate users need to move more than accurate services, and vice verse. 
We express the average error 𝑒𝑒𝑢𝑢𝑖𝑖 of users 𝑢𝑢𝑖𝑖 as well as the average error 𝑒𝑒𝑠𝑠𝑗𝑗 of services 𝑠𝑠𝑗𝑗 as. 
Therefore, we set two weights 𝑤𝑤𝑢𝑢𝑖𝑖 and 𝑤𝑤𝑠𝑠𝑗𝑗 for users 𝑢𝑢𝑖𝑖 and services 𝑠𝑠𝑗𝑗 , such as (15) and (16): 
 𝑤𝑤𝑢𝑢𝑖𝑖 = 𝑒𝑒𝑢𝑢𝑖𝑖 (𝑒𝑒𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑠𝑠𝑗𝑗)⁄  (15)   
 
 𝑤𝑤𝑠𝑠𝑗𝑗 = 𝑒𝑒𝑠𝑠𝑗𝑗 (𝑒𝑒𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑠𝑠𝑗𝑗)⁄  (16)   

Where 𝑤𝑤𝑢𝑢𝑖𝑖 + 𝑤𝑤𝑠𝑠𝑗𝑗 = 1 . To update the 𝑒𝑒𝑢𝑢𝑖𝑖 and 𝑒𝑒𝑠𝑠𝑗𝑗 , we apply the exponential moving 
average[18], which is a weighted average, giving more weight ( 𝛽𝛽 controlled) to the latest data, 
as shown in (17) and (18): 
 𝑒𝑒𝑢𝑢𝑖𝑖 = 𝛽𝛽𝑤𝑤𝑢𝑢𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 + (1 − 𝛽𝛽𝑤𝑤𝑢𝑢𝑖𝑖)𝑒𝑒𝑢𝑢𝑖𝑖 (17)   
 
 𝑒𝑒𝑠𝑠𝑗𝑗 = 𝛽𝛽𝑤𝑤𝑠𝑠𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖 + (1 − 𝛽𝛽𝑤𝑤𝑠𝑠𝑗𝑗)𝑒𝑒𝑠𝑠𝑗𝑗 (18)   

Where 𝑒𝑒𝑖𝑖𝑖𝑖 is relative error of QoS record, between 𝑔𝑔𝑖𝑖𝑖𝑖  and 𝑟𝑟𝑖𝑖𝑖𝑖 .as shown in (19) : 
 𝑒𝑒𝑖𝑖𝑖𝑖 = �𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖� 𝑟𝑟𝑖𝑖𝑖𝑖�  (19)   

After getting the updated weights 𝑤𝑤𝑢𝑢𝑖𝑖 and 𝑤𝑤𝑠𝑠𝑗𝑗 for each interaction, we finally redefine (13) 
and (14), such as (20) and (21): 

 𝑈𝑈𝑖𝑖 ← 𝑈𝑈𝑖𝑖 − 𝜂𝜂𝑤𝑤𝑢𝑢𝑖𝑖[�𝑔𝑔𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖�𝑔𝑔𝑖𝑖𝑖𝑖′ 𝑆𝑆𝑗𝑗 𝑟𝑟𝑖𝑖𝑖𝑖2� + 𝜆𝜆𝑈𝑈𝑖𝑖 + 𝛾𝛾(𝑈𝑈𝑖𝑖 − � 𝑤𝑤𝑎𝑎𝑈𝑈𝑎𝑎
𝑎𝑎∈𝑆𝑆𝐺𝐺𝑢𝑢(𝑖𝑖)

)] (20)   

 

 𝑆𝑆𝑗𝑗 ← 𝑆𝑆𝑗𝑗 − 𝜂𝜂𝑤𝑤𝑠𝑠𝑗𝑗[�𝑔𝑔𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖�𝑔𝑔𝑖𝑖𝑖𝑖′ 𝑈𝑈𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖2� + 𝜆𝜆𝑆𝑆𝑗𝑗 + 𝛾𝛾(𝑉𝑉𝑗𝑗 − � 𝑤𝑤𝑏𝑏𝑉𝑉𝑏𝑏
𝑏𝑏∈𝑆𝑆𝐺𝐺𝑣𝑣(𝑗𝑗)

)] (21)   

Where 𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑗𝑗 are data in current time slice 𝑡𝑡𝑐𝑐. 

7. Experiment 
In this section, we conducted a set of experiments on a real QoS dataset of web services to 
evaluate our MFC from various aspects, including prediction accuracy, efficiency and 
parameter analysis. We use Matlab to implement the algorithm. The hardware environment is 
Intel Core i5 3.30GHz processor, and the memory size is 12GB. 
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7.1 QoS attributes 
In our experiment, we focused on two QoS attributes, response time (RT) and throughput (TP), 
both of which are important in representing the nonfunctional quality of the service. Response 
time represents the time between the user initiating the request and receiving the response, 
while throughput represents the data transfer rate (such as kbps) of the user invoking the 
service. 

We used a public real-word dataset: WS-Dream[1]. The dataset has been widely used in the 
research community since its publication. It contains approximately 40.9 million QoS records, 
recording response time and throughput values for service invocations for 142 users and 4,500 
Web services on 64 continuous time slices spaced at 15 minutes intervals. 

Table 2 provides some basic statistics for WS-Dream dataset. Both QoS attributes have a 
wide value range: the response time range is 0~20s (average 1.33s), and the throughput range 
is 0~7,000kbps (average 11.35kbps). We have drawn the original data distribution diagram of 
response time and throughput, as shown in Fig. 4. The results show that the data distribution is 
seriously deviated. Fig. 5 depicts the normal data distribution obtained through the data 
transformation in DATA TRANSFORMATION of D part of III. 

7.2 Evaluating indicator 
As for the evaluation index of QoS prediction, we use two indexes to measure the accuracy of 
QoS prediction. 

7.2.1 MRE (Median Relative Error) 
MRE adopts the median of all paired relative errors, and its calculation formula is as follows 
(22): 
 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡)=0{𝑅𝑅�𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡)� } (22)   

                                                  
Table 2. Units for Magnetic Properties 

 
Property Value 

QoS Records 40,896,000 

Users 142 

Services 4,500 

Timeslices 64 

Time 

Interval 
15min 

Rt Range 0~20s 

Rt Average 1.33s 

Tp Range 0~7,000kbps 

Tp Average 11.35kbps 

 
Where 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) is real QoS value, 𝑅𝑅�𝑖𝑖𝑖𝑖(𝑡𝑡) is the corresponding predicted QoS value. 
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7.2.2 NPRE (Ninety-Percent Relative Error) 
NPRE is 90% of all paired relative errors. 

7.3 Accuracy comparison 
To evaluate our proposed method and performance, we compared our real-time QoS 
prediction MFC method with four other methods that are considered to have QoS prediction 
potential[1, 10, 19-21]. Although these methods were not initially used for real-time service 
tuning, they were included in the comparison to compare algorithm accuracy. 

AMF: Adaptive Matrix Factorization online predictive QoS algorithm[1], by using the real 
QoS data collected by my own team, the traditional matrix decomposition model is extended 
and the characteristics of real QoS data are fully considered through data transformation, 
online learning and adaptive weighting. 

UIPCC: The user-based CF method (UPCC) uses similarity between users to predict QoS 
values, the item-based CF method (IPCC) uses similarity between services to predict QoS 
values. [19]combine the two and make full use of similar information between users and 
services to predict QoS. 

PMF: this is a widely used predictive model based on MF. [20]PMF has been applied to 
offline QoS prediction. For our real-time QoS prediction problem, we use PMF under each 
time slice, and finally take the mean of all the predicted results under the time slice. 

WSPred: [10]this method processes the time perception QoS prediction problem of Web 
services through the fusion of time information. It uses the tensor factorization model[22], 
which is based on the extension of low-rank MF and represents the 3D (user, service, time) 
QoS matrix. 

NTF: Non-negative Tensor Factorization (NTF) is a method proposed by[21], which 
further extends WSPred and applies non-negative constraints to the tensor factorization model 
of time-sensing QoS prediction. 

At the same time, in order to test performance of our method on sparse data, the optimal 
parameters obtained through our experiment are as follows: 𝜆𝜆= 0.0003,  𝛾𝛾=0.001/0.005/0.01 
(see the parameter analysis in section 4.4 for details), a comparative experiment of sparse data 
was carried out. 

The results of our comparative experiment are shown in Table 3 and Table 4, respectively 
the results of the two predictors MRE and NPRE. We can see from the table that our method 
MFC has more accurate prediction effect than other algorithms (bold mark). The "Improve" 
column shows the average improvement under different densities of QoS matrix. For the 
response time (RT) attribute, MFC achieves an improvement of 3.3%~43.9% on MRE and 
34.8%~658.9% on NPRE. Similarly, for the throughput (TP) attribute, MFC achieves an 
improvement of 4.2%~25% on MRE and 29.2%~1298% on NPRE. In particular, the AMF 
model has the optimal effect in all comparison algorithms. It is an extension of the traditional 
MF model and generates good accuracy by considering the characteristics of QoS attributes. 
However, the AMF model does not take into account the category of users and services that 
generate QoS values. Since QoS data is the attribute value generated by the user invoking the 
service, so QoS data has the characteristics of users and services. Therefore, our model takes 
category information of users and service into consideration in the AMF model to produce 
better prediction effect. 
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Table 3. QoS Prediction Accuracy (MRE) 

QoS 

Methods 

MRE(%) 

D=0.5 D=1 D=2 D=3 D=4 D=5 D=10 D=15 D=20 
Improv

e 

R

T 

UIPCC 0.89 0.88 0.88 0.87 0.85 0.75 0.66 0.64 0.62 43.9% 

PMF 0.73 0.72 0.71 0.70 0.65 0.61 0.61 0.58 0.57 31.1% 

WSPre

d 
0.69 0.67 0.66 0.64 0.62 0.59 0.54 0.52 0.49 25.8% 

NTF 0.64 0.63 0.62 0.60 0.58 0.56 0.51 0.51 0.48 22.7% 

AMF 0.49 0.45 0.42 0.39 0.37 0.36 0.32 0.30 0.29 3.3% 

MFC 0.45 0.41 0.37 0.35 0.33 0.32 0.30 0.29 0.28 — 

T

P 

UIPCC 0.80 0.73 0.66 0.69 0.67 0.62 0.60 0.52 0.45 25% 

PMF 0.77 0.66 0.62 0.60 0.57 0.54 0.52 0.51 0.44 19.30% 

WSPre

d 
0.68 0.57 0.53 0.50 0.49 0.44 0.43 0.42 0.36 10.20% 

NTF 0.64 0.54 0.52 0.50 0.48 0.46 0.43 0.41 0.37 9.30% 

AMF 0.58 0.51 0.47 0.45 0.42 0.41 0.38 0.36 0.32 4.20% 

MFC 0.54 0.45 0.40 0.38 0.37 0.37 0.34 0.34 0.31 — 

            
 

Table 4. QoS Prediction Accuracy (NPRE) 

QoS 

Methods 

NPRE(%) 

D=0.5 D=1 D=2 D=3 D=4 D=5 D=10 D=15 D=20 
Improv

e 

R

T 

UIPCC 12.30 9.99 9.21 8.11 7.33 6.48 5.49 4.86 4.62 658.9% 

PMF 4.31 3.43 3.08 2.71 2.49 2.56 2.79 2.96 3.03 203.1% 

WSPre

d 
5.68 4.45 3.91 3.70 3.44 3.35 3.13 2.83 2.68 267.5% 

NTF 4.99 4.18 3.80 3.61 3.42 3.23 3.11 3.05 2.98 258.6% 

AMF 1.99 1.79 1.62 1.45 1.28 1.21 1.02 0.95 0.91 34.8% 

MFC 1.33 1.11 1.09 1.01 0.97 0.95 0.88 0.89 0.87 — 

T

P 

UIPCC 16.01 15.01 14.87 
14.7

1 

14.5

5 
14.34 14.12 14.98 13.28 1298% 

PMF 3.51 3.66 3.45 3.20 2.91 2.85 3.13 3.34 3.42 160.4% 

WSPre

d 
3.31 3.68 3.41 3.51 3.23 3.32 3.45 3.51 3.55 177.0% 
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NTF 3.12 3.00 2.96 3.00 3.10 3.36 3.44 3.43 3.45 153.7% 

AMF 3.40 2.71 2.27 1.93 1.77 1.66 1.46 1.27 1.19 29.2% 

MFC 2.71 2.11 1.89 1.71 1.62 1.46 1.31 1.13 1.11 — 

            

 

7.4 Effect and efficiency of MFC 
Here we need to analyze the effectiveness and efficiency of our method MFC. As shown in Fig. 
6, we compare our method with AMF method in predicting the difference in accuracy. There 
are two differences: on MRE and on NPRE. We take the mean values of RT and TP of MFC at 
different densities of QoS matrix, and the mean values of RT and TP of AMF method at 
different densities of QoS matrix. Then we can get the predicting gap between MFC and AMF 
method at different densities of QoS matrix. We can see from Fig. 6 that with the increase of 
density, the difference between MFC and AMF method is decreasing. This shows that our 
method has better prediction effect when the density of QoS matrix is very sparse. This is 
because our method incorporates user category and service category. When predicting 
unknown QoS values, similar users and similar services will be taken into account, and the 
prediction accuracy is improved. With the density increases, the gap between our method and 
AMF method decreases gradually on MRE and NPRE. This is because that, when the density 
of QoS matrix is not too, MF has more reliable data (compared with sparse data) when 
calculating the inner product of user term matrix and service term matrix with stochastic 
gradient descent algorithm. And MF prediction ability can be better reflected. The 
performance of predicting the QoS value based on user category and service category is 
weakened, which leads to the larger matrix density and the less obvious our method is. 
Therefore, it can be said that our method not only improves the prediction accuracy in all 
density, but also solves the cold start problem to a certain extent. 

However, MFC also has drawbacks. In addition to the above-mentioned performance is not 
obvious when the density of QoS matrix is large, the algorithm complexity of MFC is too high, 
which consists of two parts: Calculating K-means results and Solving matrix factorization. 
The specific complexity of each part is shown in Table 5. 

 

 
(a)Change rate of MRE                                           (b) Change rate of NPRE 

Fig. 6. Change rate of difference between our method and AMF. 
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Table 5. The computational complexity of MFC  

The major procedures Computational complexity 

Calculating K-means results 𝑂𝑂(𝑚𝑚2 + 𝑛𝑛2) 

Solving matrix factorization 𝑂𝑂(𝑖𝑖𝑖𝑖𝑖𝑖) 

 
 

Where 𝑚𝑚 is the number of users, 𝑛𝑛 is the number of service.  𝑖𝑖 is the interaction times of 
gradient descent algorithm in MF model, 𝜌𝜌 is the average size of data set used, and  𝑑𝑑 is the 
number of potential factors in MF model. 

From Table 5, we can see that the complexity of MFC is  
𝑂𝑂((𝑚𝑚2 + 𝑛𝑛2) + 𝑖𝑖𝑖𝑖𝑖𝑖)  , and the complexity of AMF algorithm is  
𝑂𝑂(𝑖𝑖𝑖𝑖𝑖𝑖), from this formula alone, the complexity of our method is far greater than that of AMF 
algorithm. However, it should be noted that Fig. 6 shows that MFC has better performance 
when the density of the QoS matrix is very small. In other words, the number of users and the 
number of services corresponding to the density of the QoS matrix is very small, so there is 
little difference between 𝑂𝑂((𝑚𝑚2 + 𝑛𝑛2) + 𝑖𝑖𝑖𝑖𝑖𝑖) and 𝑂𝑂(𝑖𝑖𝑖𝑖𝑖𝑖). However, with the increase of the 
density of the QoS matrix, MFC not only has a low prediction accuracy, but also has a high 
algorithm complexity. And the algorithm complexity increases with the increase of density of 
QoS matrix. 

 

7.5 Selection of Parameters 
In order to evaluate our method, that is, to incorporate user categories and service categories 
into the basic real-time MF model, we set different values of parameters  𝛾𝛾 to find the values 
that make the algorithm the most accurate. There are two main parameters in the algorithm: 
the regularization parameter 𝜆𝜆 of avoiding over-fitting and the regularization parameter 𝛾𝛾 of 
clustering category. If the parameter 𝛾𝛾 is 0, MFC will become the basic AMF model. If the 
value of the parameter 𝛾𝛾 is large, the user category and service category will have a great 
impact on the predicted effect. On the basis of previous experience [1], we set the parameter 𝜆𝜆  
as 0.0003, because the prediction accuracy is the highest at 0.0003. Therefore, we analyze the 
influence of parameters on predicting accuracy. As shown in Fig. 7, we take six values of 
parameters 𝛾𝛾: 0.0005, 0.001, 0.005, 0.01, 0.015, 0.02. It can be observed that MRE decreases 
when 𝛾𝛾 is 0 to 0.001 or 0.005 or 0.01, which means that the use of category regularization term 
can improve the predicted accuracy. However, when the parameters 𝛾𝛾 reach a certain value 
(0.001 or 0.005 or 0.01), MRE begins to increase, which is due to the occurrence of 
over-fitting phenomenon, which makes the predicted accuracy no longer improve. So 
concluded that adding basic real-time MF model to the category regularization term is helpful 
to improve the predicted accuracy, but not arbitrary 𝛾𝛾 values are helpful to improve the 
predicted accuracy. Fixed values are recommended: 0.001 or 0.005 or 0.01. 
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Fig. 7. Importance of parameter γ . 

8. Discussion 
In this paper, we propose an extended matrix factorization model (MFC) for real-time web 
service QoS prediction. Based on our analysis and conclusions of predicting candidate service 
QoS model, we use user/service category group information to extend the traditional matrix 
factorization, improving the prediction accuracy and at the same time makes our model more 
suitable for real-time QoS prediction under cold-start conditions. However, our model has 
some limitations. Therefore, we discuss the complexity and improvements of our model, so as 
to provide some guidance for future work. 

Complexity issues. Through the discussion in the previous section, we know that our 
method has a high complexity, which is caused by the operation of extracting group of 
categories of users and services. But the complexity of our K-means algorithm is less than the 
complexity of propagating clustering categories through preference [3]. Obviously, the 
characteristics of users and services have good expressive power for prediction under 
collaborative filtering, but its disadvantage is that it will increase the complexity of the model. 
Therefore, how to improve the prediction effect without spending a lot of calculation cost is an 
urgent problem to be solved. 

Potential improvements in QoS prediction. Our method currently uses the K-means 
clustering algorithm to extract the characteristics of users and services. However, the K-means 
algorithm is unstable, especially for large-scale QoS matrices, the distribution of sample 
points is very scattered, and the K-means clustering effect will be greatly reduced. This 
problem is worthy of further exploration. A more stable clustering algorithm can be used to 
extract the characteristics of users and services. In addition, in this paper, the exponential 
moving average is used to adjust the learning step parameters. However, time information will 
be more useful, such as the application of time series technology to change point detection. 

9. Conclusion and future work 
We proposed a expanded matrix factorization model for real-time web service QoS prediction. 
Our method firstly preprocesses data by PCA, then uses K-means algorithm to cluster users 
and web services, and the new regularization item of model using category group information 
of users and services, expanding the traditional matrix factorization model. The validity of our 
method is verified by experiments on real dataset. Finally, the limitations and potential of our 
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method are discussed. Our future work aims to propose a low complexity prediction model 
that suitable the cold-start QoS prediction problem. 

References 
[1] Zhu, J, et al., “Online QoS prediction for runtime service adaptation via adaptive matrix 

factorization,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp. 
2911-2924, Oct. 2017. Article (CrossRef Link) 

[2] Metzger, A., et al., “Towards pro-active adaptation with confidence: augmenting service 
monitoring with online testing,” in Proc. of 2010 ICSE Workshop on Software Engineering for 
Adaptive and Self-Managing Systems, pp. 20-28,  2010. Article (CrossRef Link) 

[3] Ryu, D., K. Lee, and J. Baik, “Location-based Web Service QoS Prediction via Preference 
Propagation to address Cold Start Problem,” IEEE Transactions on Services Computing, vol. 14, 
no. 3,  pp. 736-746, Apr. 2018. Article (CrossRef Link) 

[4] Cheng T, Wen J, Xiong Q, et al., “Personalized Web Service Recommendation Based on QoS 
Prediction and Hierarchical Tensor Decomposition,” IEEE Access, vol. 7, pp. 62221-62230, Apr. 
2019. Article (CrossRef Link) 

[5] Li S, Wen J, Luo F, et al., “Time-Aware QoS Prediction for Cloud Service Recommendation 
Based on Matrix Factorization,” IEEE Access, vol. 6, pp.77716-77724, Nov. 2018.  
Article (CrossRef Link) 

[6] D. Wu, X. Luo, M. Shang, Y. He, G. Wang and X. Wu, “A Data-Characteristic-Aware Latent 
Factor Model for Web Services QoS Prediction,” IEEE Transactions on Knowledge and Data 
Engineering, pp. 1-1, 2020. Article (CrossRef Link) 

[7] Herlocker, J.L., et al., “Evaluating collaborative filtering recommender systems,”ACM 
Transactions on Information Systems (TOIS), vol. 22, no 1, pp. 5-53, Jan. 2004.  
Article (CrossRef Link) 

[8] Hartigan, J.A. and M.A. Wong, “Algorithm AS 136: A k-means clustering algorithm,” Journal of 
the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no 1, pp. 100-108, 1979.  

[9] Zheng, Z. and M.R. Lyu, “Personalized reliability prediction of web services,” ACM Transactions 
on Software Engineering and Methodology (TOSEM), vol. 22, no 2, pp. 12, pp. 1-25, Mar. 2013. 
Article (CrossRef Link) 

[10] Zheng, Z. and M.R. Lyu, “Collaborative reliability prediction of service-oriented systems,” in 
Proc. of 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1, pp. 
35-44, May, 2010. Article (CrossRef Link) 

[11] Zhang, Y., Z. Zheng, and M.R. Lyu, “WSPred: A time-aware personalized QoS prediction 
framework for Web services,” in Proc. of 2011 IEEE 22nd International Symposium on Software 
Reliability Engineering, 2011. Article (CrossRef Link) 

[12] Zheng, Z., et al., “Collaborative web service qos prediction via neighborhood integrated matrix 
factorization,” IEEE Transactions on Services Computing, vol. 6, no 3, pp. 289-299, Jan. 2012. 
Article (CrossRef Link) 

[13] Yang, Y., et al., “Generalized aggregate Quality of Service computation for composite services,” 
Journal of Systems and Software, vol. 85, no 8, pp. 1818-1830, Aug. 2012.  
Article (CrossRef Link) 

[14] Strom, D. and J.F. van der Zwet, “Truth and lies about latency in the cloud,” Netherlands: 
Interxion, 2012. [Online]. 
Available:https://www.interxion.com/whitepapers/truth-and-lies-of-latency-in-the-cloud 

[15] Mohammed, A.A., et al., “Human face recognition based on multidimensional PCA and extreme 
learning machine,” Pattern Recognition, vol. 44, no 10, pp. 2588-2597, Oct. 2011.  
Article (CrossRef Link) 

[16] Mnih, A. and R.R. Salakhutdinov, “Probabilistic matrix factorization,” in Proc. of the 20th 
International Conference on Neural Information Processing Systems, pp. 1257-1264, 2007. 
Article (CrossRef Link) 

https://doi.org/10.1109/TPDS.2017.2700796
https://doi.org/10.1145/1808984.1808987
https://doi.org/10.1109/TSC.2018.2821686
https://doi.org/10.1109/ACCESS.2019.2909548
https://doi.org/10.1109/ACCESS.2018.2883939
https://doi.org/10.1109/TKDE.2020.3014302
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/2430545.2430548
https://doi.org/10.1145/1806799.1806809
https://doi.org/10.1109/ISSRE.2011.17
https://doi.org/10.1109/TSC.2011.59
https://doi.org/10.1016/j.jss.2012.03.005
https://doi.org/10.1016/j.patcog.2011.03.013
https://proceedings.neurips.cc/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021                           3933 

[17] Sakia, R., “The Box‐Cox transformation technique: a review,” Journal of the Royal Statistical 
Society: Series D (The Statistician), vol. 41, no 2, pp. 169-178, June 1992. Article (CrossRef Link) 

[18] Shapiro, A. and Y. Wardi, “Convergence analysis of gradient descent stochastic algorithms,” 
Journal of optimization theory and applications, vol. 91, no 2, pp. 439-454, Nov. 1996.  
Article (CrossRef Link) 

[19] de Souza, M.J.S., et al., “Examination of the profitability of technical analysis based on moving 
average strategies in BRICS,” Financial Innovation, vol. 4, no 1,pp. 3, Feb. 2018.  
Article (CrossRef Link) 

[20] Zheng, Z., et al., “WSRec: A Collaborative Filtering Based Web Service Recommender System,” 
in Proc. of IEEE International Conference on Web Services, July 6-10, 2009.  
Article (CrossRef Link) 

[21] Zheng, Z., et al., “Collaborative Web Service QoS Prediction via Neighborhood Integrated Matrix 
Factorization,” IEEE Transactions on Services Computing, vol. 6, no 3, pp. 289-299, July. 2013. 
Article (CrossRef Link) 

[22] Zhang, W., et al., “Temporal QoS-aware Web Service recommendation via Non-negative Tensor 
Factorization,” in Proc. of International Conference on World Wide Web, pp. 585–596, 2014. 
Article (CrossRef Link) 

[23] Kolda, T.G. and B.W. Bader, “Tensor Decompositions and Applications,” Siam Review, vol. 51, 
no 3, pp. 455-500, Aug.  2009. Article (CrossRef Link) 

[24] A. Kim, C. Wang and S. Seo, "PCA-CIA Ensemble-based Feature Extraction for Bio-Key 
Generation," KSII Transactions on Internet and Information Systems, vol. 14, no. 7, pp. 
2919-2937,July. 2020. Article (CrossRef Link) 

[25] A. Raza, M. F. Khan, M. Maqsood, B. Haider and F. Aadil, "Adaptive k-means clustering for 
Flying Ad-hoc Networks," KSII Transactions on Internet and Information Systems, vol. 14, no. 6, 
pp. 2670-2685, June 2020.  Article (CrossRef Link) 

[26] J. Kim, M. Ryu and S. Cha, "Approximate k values using Repulsive Force without Domain 
Knowledge in k-means," KSII Transactions on Internet and Information Systems, vol. 14, no. 3, pp. 
976-990, Mar. 2020. Article (CrossRef Link) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.2307/2348250
https://doi.org/10.1007/BF02190104
https://doi.org/10.1186/s40854-018-0087-z
https://doi.org/10.1109/ICWS.2009.30
https://doi.org/10.1109/TSC.2011.59
https://doi.org/10.1145/2566486.2568001
https://doi.org/10.1137/07070111X
https://doi.org/10.3837/tiis.2020.07.011
https://doi.org/10.3837/tiis.2020.06.019
https://doi.org/10.3837/tiis.2020.03.004


3934                                           Hao et al.: An expanded Matrix Factorization model for real-time Web service QoS prediction 

Jinsheng Hao received his Master's degree from Wuhan University of Techology. Now, he 
is a Ph. D candidate, with Information college Department, Xinjiang University, Urumqi, 
China. His current interests are network security and cloud computing etc. 
 
 
 
 
 
 

 
Guoping Su received the Ph.D. from the Beijing University of Aeronautics and 
Astronautics. He is a doctoral supervisor of Xinjinag University. His research interests 
include network security and Information science. 
 
 
 
 
 
 

 
Xiaofeng Han received her Master’s degree from Xinjiang University. She is currently a 
PhD student in School of Computer Science, Beijing University of Posts and 
Telecommunications, Beijing. Her research interests include user behavior analytics, 
recommender systems and intelligent information processing. 
 
 
 
 
 

 
Wei Nie received the Ph.D. from the University of Electronic Science and Technology. He is 
a Lecturer of Shenzhen University. His research interests include network security and 
Software Defined Network. 
 


