• Title/Summary/Keyword: Prediction Method

Search Result 9,119, Processing Time 0.038 seconds

Real-Time Flood Forecasting by Using a Measured Data Based Nomograph for Small Streams (계측자료 기반 Nomograph를 이용한 실시간 소하천 홍수량 산정 연구)

  • Tae Sung Cheong;Changwon Choi;Sung Je Yei;Kang Min Koo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.116-124
    • /
    • 2023
  • As the flood damage on small streams increase due to the increase in frequency of extreme climate events, the need to measure hydraulic data of them has increased for disaster risk management. National Disaster Management Institute, Ministry of Interior and Safety develops CADMT, a CCTV-based automatic discharge measurement technology, and operates pilot small streams to verify its performance and develop disaster risk management technology. The research selects two small streams such as the Neungmac and the Jungsunpil streams to develop the Nomograph by using the 4-Parameter Logistic method using only the observed rainfall data from the Automatic Weather System operated by the Korea Meteorological Agency closest to the small streams and discharge data collected by using the CADMT. To evaluate developed Nomograph, the research forecasts floods discharges in each small stream and compares the result with the observed discharges. As a result of the evaluations, the forecasted value is found to represent the observed value well, so if more accurate observed data are collected and the Nomograph based on it is developed in the future, the high-accuracy flood prediction and warning will be possible.

Selection Method for Installation of Reduction Facilities to Prevention of Roe Deer(Capreouls pygargus) Road-kill in Jeju Island (제주도 노루 로드킬 방지를 위한 저감시설 대상지 선정방안 연구)

  • Kim, Min-Ji;Jang, Rae-ik;Yoo, Young-jae;Lee, Jun-Won;Song, Eui-Geun;Oh, Hong-Shik;Sung, Hyun-Chan;Kim, Do-kyung;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.19-32
    • /
    • 2023
  • The fragmentation of habitats resulting from human activities leads to the isolation of wildlife and it also causes wildlife-vehicle collisions (i.e. Road-kill). In that sense, it is important to predict potential habitats of specific wildlife that causes wildlife-vehicle collisions by considering geographic, environmental and transportation variables. Road-kill, especially by large mammals, threatens human safety as well as financial losses. Therefore, we conducted this study on roe deer (Capreolus pygargus tianschanicus), a large mammal that causes frequently Road-kill in Jeju Island. So, to predict potential wildlife habitats by considering geographic, environmental, and transportation variables for a specific species this study was conducted to identify high-priority restoration sites with both characteristics of potential habitats and road-kill hotspot. we identified high-priority restoration sites that is likely to be potential habitats, and also identified the known location of a Road-kill records. For this purpose, first, we defined the environmental variables and collect the occurrence records of roe deer. After that, the potential habitat map was generated by using Random Forest model. Second, to analyze roadkill hotspots, a kernel density estimation was used to generate a hotspot map. Third, to define high-priority restoration sites, each map was normalized and overlaid. As a result, three northern regions roads and two southern regions roads of Jeju Island were defined as high-priority restoration sites. Regarding Random Forest modeling, in the case of environmental variables, The importace was found to be a lot in the order of distance from the Oreum, elevation, distance from forest edge(outside) and distance from waterbody. The AUC(Area under the curve) value, which means discrimination capacity, was found to be 0.973 and support the statistical accuracy of prediction result. As a result of predicting the habitat of C. pygargus, it was found to be mainly distributed in forests, agricultural lands, and grasslands, indicating that it supported the results of previous studies.

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

MiR-188-5p regulates the proliferation and differentiation of goat skeletal muscle satellite cells by targeting calcium/calmodulin dependent protein kinase II beta

  • Jing Jing;Sihuan Zhang;Jinbo Wei;Yuhang Yang;Qi Zheng;Cuiyun Zhu;Shuang Li;Hongguo Cao;Fugui Fang;Yong Liu;Ying-hui Ling
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1775-1784
    • /
    • 2023
  • Objective: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. Methods: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. Results: It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. Conclusion: These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

Analysis of Research Trends Related to drug Repositioning Based on Machine Learning (머신러닝 기반의 신약 재창출 관련 연구 동향 분석)

  • So Yeon Yoo;Gyoo Gun Lim
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.

Development and Validation of a Simple Index Based on Non-Enhanced CT and Clinical Factors for Prediction of Non-Alcoholic Fatty Liver Disease

  • Yura Ahn;Sung-Cheol Yun;Seung Soo Lee;Jung Hee Son;Sora Jo;Jieun Byun;Yu Sub Sung;Ho Sung Kim;Eun Sil Yu
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • Objective: A widely applicable, non-invasive screening method for non-alcoholic fatty liver disease (NAFLD) is needed. We aimed to develop and validate an index combining computed tomography (CT) and routine clinical data for screening for NAFLD in a large cohort of adults with pathologically proven NAFLD. Materials and Methods: This retrospective study included 2218 living liver donors who had undergone liver biopsy and CT within a span of 3 days. Donors were randomized 2:1 into development and test cohorts. CTL-S was measured by subtracting splenic attenuation from hepatic attenuation on non-enhanced CT. Multivariable logistic regression analysis of the development cohort was utilized to develop a clinical-CT index predicting pathologically proven NAFLD. The diagnostic performance was evaluated by analyzing the areas under the receiver operating characteristic curve (AUC). The cutoffs for the clinical-CT index were determined for 90% sensitivity and 90% specificity in the development cohort, and their diagnostic performance was evaluated in the test cohort. Results: The clinical-CT index included CTL-S, body mass index, and aspartate transaminase and triglyceride concentrations. In the test cohort, the clinical-CT index (AUC, 0.81) outperformed CTL-S (0.74; p < 0.001) and clinical indices (0.73-0.75; p < 0.001) in diagnosing NAFLD. A cutoff of ≥ 46 had a sensitivity of 89% and a specificity of 41%, whereas a cutoff of ≥ 56.5 had a sensitivity of 57% and a specificity of 89%. Conclusion: The clinical-CT index is more accurate than CTL-S and clinical indices alone for the diagnosis of NAFLD and may be clinically useful in screening for NAFLD.

Analysis-based Pedestrian Traffic Incident Analysis Based on Logistic Regression (로지스틱 회귀분석 기반 노인 보행자 교통사고 요인 분석)

  • Siwon Kim;Jeongwon Gil;Jaekyung Kwon;Jae seong Hwang;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.15-31
    • /
    • 2024
  • The characteristics of elderly traffic accidents were identified by reflecting the situation of the elderly population in Korea, which is entering an ultra-aging society, and the relationship between independent and dependent variables was analyzed by classifying traffic accidents of serious or higher and traffic accidents of minor or lower in elderly pedestrian traffic accidents using binomial variables. Data collection, processing, and variable selection were performed by acquiring data from the elderly pedestrian traffic accident analysis system (TAAS) for the past 10 years (from 13 to 22 years), and basic statistics and analysis by accident factors were performed. A total of 15 influencing variables were derived by applying the logistic regression model, and the influencing variables that have the greatest influence on the probability of a traffic accident involving severe or higher elderly pedestrians were derived. After that, statistical tests were performed to analyze the suitability of the logistic model, and a method for predicting the probability of a traffic accident according to the construction of a prediction model was presented.

Development of a Listener Position Adaptive Real-Time Sound Reproduction System (청취자 위치 적응 실시간 사운드 재생 시스템의 개발)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.458-467
    • /
    • 2010
  • In this paper, a new audio reproduction system was developed in which the cross-talk signals would be reasonably cancelled at an arbitrary listener position. To adaptively remove the cross-talk signals according to the listener's position, a method of tracking the listener position was employed. This was achieved using the two microphones, where the listener direction was estimated using the time-delay between the two signals from the two microphones, respectively. Moreover, room reverberation effects were taken into consideration where linear prediction analysis was involved. To remove the cross-talk signals at the left-and right-ears, the paths between the sources and the ears were represented using the KEMAR head-related transfer functions (HRTFs) which were measured from the artificial dummy head. To evaluate the usefulness of the proposed listener tracking system, the performance of cross-talk cancellation was evaluated at the estimated listener positions. The performance was evaluated in terms of the channel separation ration (CSR), a -10 dB of CSR was experimentally achieved although the listener positions were more or less deviated. A real-time system was implemented using a floating-point digital signal processor (DSP). It was confirmed that the average errors of the listener direction was 5 degree and the subjects indicated that 80 % of the stimuli was perceived as the correct directions.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.