Acknowledgement
본 연구는 과학기술정보통신부의 한국연구재단 중견 연구(NRF-2020R1A2C2012113)와 국토교통부 국토교통과학기술진흥원 'AI 기반 가스·오일 플랜트 운영·유지 관리 핵심기술 개발(RS-2021-KA161932)' 사업의 지원으로 수행되었으며 이에 감사드립니다.
References
- Burden, F. and Winkler, D. (2009), Bayesian regularization of neural networks. Artificial neural networks: methods and applications, 23-42.
- Cho, N. J., Cha, W., and Kim, H. K. (2016), Non-destructive Detection of Underground Cavities Using Thermal Images. Electron, Journal of the Korean Geotechnical Society, Vol.21, No.16, pp. 5465-5476.
- Go, G. H. and Lee, S. J. (2021), A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities, Journal of the Korean Geotechnical Society, Vol.37, No.10, pp.65-76. https://doi.org/10.7843/KGS.2021.37.10.65
- Gu, D., Shen, J., and Wang, X. (2018), Deep learning, Instructor.
- Hateffard, F., Dolati, P., Heidari, A., and Zolfaghari, A. A. (2019), Assessing the Performance of Decision Tree and Neural Network Models in Mapping Soil Properties, Journal of Mountain Science, Vol.16, No.8, pp.1833-1847. https://doi.org/10.1007/s11629-019-5409-8
- Hecht-Nielsen, R. (1992), Theory of the backpropagation neural network, In Neural networks for perception (pp.65-93), Academic Press.
- Jafari, M. K., Shafiei, A., and Razmkhah, A. (2002), Dynamic properties of fine grained soils in south of Tehran.
- Jang Byeong-su, Kim Young-seok, Kim Se-won, Choi Hyun-jun, and Yoon Hyeong-gu (2023), Evaluation of Underground Cavities Using Infrared Images, Journal of the Korean Society of Geotechnical Engineering, Vol.39, No.7, pp.69-76.
- Kalantari, A. R., Johari, A., Zandpour, M., and Kalantari, M. (2023), Effect of Spatial Variability of Soil Properties and Geostatistical Conditional Simulation on Reliability Characteristics and Critical Slip Surfaces of Soil Slopes, Transportation Geotechnics, 39, 100933.
- Ng, W., Minasny, B., Montazerolghaem, M., Padarian, J., Ferguson, R., Bailey, S., and McBratney, A. B. (2019), Convolutional Neural Network for Simultaneous Prediction of Several Soil Properties Using Visible/near-infrared, Mid-infrared, and their Combined Spectra, Geoderma, 352, pp.251-267. https://doi.org/10.1016/j.geoderma.2019.06.016
- Michel, C., Gueguen, P., Lestuzzi, P., and Bard, P. Y. (2010), Comparison between Seismic Vulnerability Models and Experimental Dynamic Properties of Existing Buildings in France, Bulletin of Earthquake Engineering, 8, pp.1295-1307. https://doi.org/10.1007/s10518-010-9185-7
- Menq, F. Y. (2003), Dynamic properties of sandy and gravelly soils, The University of Texas at Austin.
- Rainieri, C., Fabbrocino, G., and Cosenza, E. (2010), Some Remarks on Experimental Estimation of Damping for Seismic Design of Civil Constructions, Shock and Vibration, Vol.17, No.4-5, pp.383-395. https://doi.org/10.1155/2010/737452
- Ranganathan, A. (2004), The Levenberg-marquardt Algorithm, Tutoral on LM algorithm, Vol.11, No.1, pp.101-110.
- Rojas, R., and Rojas, R. (1996), The backpropagation algorithm, Neural networks: a systematic introduction, pp.149-182.
- Roweis, S. (1996), Levenberg-marquardt optimization, Notes, University Of Toronto, 52.
- Sapna, S., Tamilarasi, A., and Kumar, M. P. (2012), Backpropagation Learning Algorithm based on Levenberg Marquardt Algorithm, Comp Sci Inform Technol (CS and IT), 2, pp.393-398. https://doi.org/10.5121/csit.2012.2438
- Yu, X. H., Chen, G. A., and Cheng, S. X. (1995), Dynamic Learning Rate Optimization of the Backpropagation Algorithm, IEEE Transactions on Neural Networks, Vol.6, No.3, pp.669-677. https://doi.org/10.1109/72.377972
- Wali, A. S. and Tyagi, A. (2020), Comparative Study of Advance Smart Strain Approximation Method Using Levenberg-marquardt and Bayesian Regularization Backpropagation Algorithm, Materials Today: Proceedings, 21, pp.1380-1395. https://doi.org/10.1016/j.matpr.2020.01.178
- Zhang, J. R., Zhang, J., Lok, T. M., and Lyu, M. R. (2007), A Hybrid Particle Swarm Optimization-back-propagation Algorithm for Feedforward Neural Network Training, Applied mathematics and computation, Vol.185, No.2, pp.1026-1037. https://doi.org/10.1016/j.amc.2006.07.025