• 제목/요약/키워드: Prediction Analysis

검색결과 9,883건 처리시간 0.04초

음선추적법과 통계적 에너지 분석법을 이용한 철도차량 실내 소음 해석 (Noise Prediction of Train Using Ray Tracing Method and Statistical Energy Analysis)

  • 박희준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.942-946
    • /
    • 2010
  • As the major sources of interior noise of train at running condition are the wheel/rail contact noise, the traction motor's noise and the driving gear's noise and these noise sources are transmitted through the car body, the noises of HVAC and air duct can be ignored. But the interior noise of train at standstill condition is decided by HVAC's noise and noise from the diffuser through the air duct. the interior noise prediction of train at standstill condition should be performed considering the shape of air duct, the air velocity and noise reduction property inside the air duct. But it is hard to estimate the interior noise level by the numerical method. Therefore train maker predict the interior noise level using The commercial noise prediction program. This paper introduce the noise prediction method of the train at standstill condition using the commercial program appling the ray tracing method and statistical energy analysis.

  • PDF

활주형 선박의 선형설계를 위한 통합 CAD/CAE 시스템 (Integrated CAD/CAE System for Planing Hull Form Design)

  • 김태윤;김동준
    • 수산해양기술연구
    • /
    • 제39권4호
    • /
    • pp.298-304
    • /
    • 2003
  • In this paper a free-form hull design program and performance prediction program for planing boat is introduced. This program enables the designer to do complex geometric hull shape design on a personal computer and accurately to predict power requirements for a given loading and velocity. For a free form design, Bezier curve model is adopted as a basic representation tool of curves and surfaces, and this program has versatile functions to do fairing jobs with a convenient graphical user interface. After creating a hull form the geometric data is provided in a manner compatible with a variety of analysis tools including 'Motion Analysis(by Zarnick)' for prediction of motion characteristics in regular waves, 'Running Attitude (by Savitsky)' for prediction of the running attitude and required power.

2중 Wiebe 연소모델을 이용한 2행정 대형 선박용 디젤엔진의 성능예측 (The prediction of Performance in Two-Stroke Large Marine Diesel Engine Using Double-Wiebc Combustion Model)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.637-653
    • /
    • 1999
  • In this study well-known burned rate expressions of Weibe function and double Wiebe function have been adopted for the combustion analysis of large two stroke marine diesel engine. A cycle simulation program was also developed to predict the performance and pressure waves in pipes using validated burned rate function,. Levenberg-Marquardt iteration method was applied to cali-brate the shape coefficients included in double Wiebe function for the performance prediction of two-stroke marine diesel engine. As a result the performance prediction using double Wiebe func-tion is well correlated withexperimental dta with the accuracy of 5% and pressure waves in intake and transport pipe are well predicted. From the results of this study it can be confirmed that the shape coefficients of burned rate function should be modified using the numerical method suggested for the accurated prediction and double Wiebe function is more suitable than Wiebe func-tion for combustion analysis of large two stroke marine engine.

  • PDF

인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측 (Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

용접구조물의 피로수명예측을 위한 수치해석모델 (Numerical Analysis Model for Fatigue Life Prediction of Welded Structures)

  • 이치승;이제명
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

인발 선재의 반경 방향 변형률 분포 예측 (Prediction of Radial Direction Strain in Drawn Wire)

  • 이상곤;황선광;조용재
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.100-105
    • /
    • 2019
  • In wire drawing, aterial deformation is concentrated on the surface of the drawn wire because of surface contact with the drawing die. Therefore, strain varies from the center to the surface of the drawn wire. In this study, based on the upper bound method, an effective strain prediction method from the center to the surface of a drawn wire was proposed. Using the proposed method, the effective strain of the drawn wire was calculated verify the proposed prediction method, the predicted effective strain was compared with the result of finite element analysis.

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

머신러닝을 이용한 항공기 수리부속 예측 모델의 실증적 연구 (An Empirical Study on Aircraft Repair Parts Prediction Model Using Machine Learning)

  • 이창호;김웅이;최연철
    • 한국항공운항학회지
    • /
    • 제26권4호
    • /
    • pp.101-109
    • /
    • 2018
  • In order to predict the future needs of the aircraft repair parts, each military group develops and applies various techniques to their characteristics. However, the aircraft and the equipped weapon systems are becoming increasingly advanced, and there is a problem in improving the hit rate by applying the existing demand prediction technique due to the change of the aircraft condition according to the long term operation of the aircraft. In this study, we propose a new prediction model based on the conventional time-series analysis technique to improve the prediction accuracy of aircraft repair parts by using machine learning model. And we show the most effective predictive method by demonstrating the change of hit rate based on actual data.

한국 남성의 고혈압에 대한 특징 선택 기반 위험 예측 (Feature selection-based Risk Prediction for Hypertension in Korean men)

  • 홍고르출;김미혜
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.323-325
    • /
    • 2021
  • In this article, we have improved the prediction of hypertension detection using the feature selection method for the Korean national health data named by the KNHANES database. The study identified a variety of risk factors associated with chronic hypertension. The paper is divided into two modules. The first of these is a data pre-processing step that uses a factor analysis (FA) based feature selection method from the dataset. The next module applies a predictive analysis step to detect and predict hypertension risk prediction. In this study, we compare the mean standard error (MSE), F1-score, and area under the ROC curve (AUC) for each classification model. The test results show that the proposed FIFA-OE-NB algorithm has an MSE, F1-score, and AUC outcomes 0.259, 0.460, and 64.70%, respectively. These results demonstrate that the proposed FIFA-OE method outperforms other models for hypertension risk predictions.

바로서기 동작 시 EEG와 역학변인 간 동작 예측의 탐구 (Exploration of Motion Prediction between Electroencephalography and Biomechanical Variables during Upright Standing Posture)

  • Kyoung Seok Yoo
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.71-80
    • /
    • 2024
  • Objective: This study aimed to explore the brain connectivity between brain and biomechanical variables by exploring motion recognition through FFT (fast fourier transform) analysis and AI (artificial intelligence) focusing on quiet standing movement patterns. Method: Participants included 12 young adult males, comprising university students (n=6) and elite gymnasts (n=6). The first experiment involved FFT of biomechanical signals (fCoP, fAJtorque and fEEG), and the second experiment explored the optimization of AI-based GRU (gated recurrent unit) using fEEG data. Results: Significant differences (p<.05) were observed in frequency bands and maximum power based on group and posture types in the first experiment. The second study improved motion prediction accuracy through GRU performance metrics derived from brain signals. Conclusion: This study delved into the movement pattern of upright standing posture through the analysis of bio-signals linking the cerebral cortex to motor performance, culminating in the attainment of motion recognition prediction performance.