• 제목/요약/키워드: Precision nano measurement

검색결과 74건 처리시간 0.032초

반사 신호를 이용한 용량 성 센서의 신호처리 및 이를 이용한 초정밀 간극 측정 (Reflective Signal Based Signal Contioning of Capacitive Sensor and High Precision Gap Measurement)

  • 김재근;이택주;임수철;박경수;박노철;박영필;엄원석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.537-537
    • /
    • 2010
  • High precision sensing is very important in various technologies. Especially, it is more important when it were applied to nano/micro meter level's sensing like AFM, storage, etc. And capacitive sensing is widely used method. To improve the measurement efficiency, many signal conditioners were studied and one of them was surface acoustic wave (SAW) device. SAW device is very widely used as a high frequency bandwidth filter. Due to the reflective characteristic of high frequency, the response of SAW device contains both propagative and reflective signal at the external impedance. In this paper, we used SAW device as signal conditioner of capacitive sensor. And high precision gap measurement was executed using capacitive load. Reference signal was reflective SAW response and the magnitude at the center frequency of SAW device by the change of impedance was checked. Finally, the attainable gap resolution was determined.

  • PDF

마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상 (Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique)

  • 김동일;허용학;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1442-1445
    • /
    • 2005
  • Several test methods, including micro strain/deformation measurement techniques, have been studied to more reliably measure the micro properties in micro/nano materials. Therefore, in this study, the continuous measurement of in-plane tensile strain in micro-sized specimens of thin film materials was introduced using the micro-ESPI technique. TiN and Au thin films 1 and $0.47\;\mu{m}$ thick, respectively, were deposited on the silicon wafer and fabricated into the micro-sized tensile specimens using the electromachining process. The micro-tensile loading system and micro-ESPI system were developed to measure the tensile strain during micro-tensile test. The micro-tensile stress-strain for these materials was determined using the algorithm for continuous strain measurement. Furthermore, algorithm for enhancing the sensitivity to measurement of in-plane tensile strain was suggested. According to the algorithm for enhancement of sensitivity, micro-tensile strain data between interfringe were calculated. It is shown that the algorithm for enhancement of the sensitivity suggested in this study makes the sensitivity to the in-plane tensile strain increase.

  • PDF

초정밀 평면 X-Y 스테이지의 최적제어기 설계 (Optimal Design of Controller for Ultra-Precision Plane X-Y Stage)

  • 곽이구;김재열;양동조;고명수;유신;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

바이몰프형 PZT를 이용한 소형만능재료시험기용 정밀 구동 액추에이터의 개발 (Development of a New Precision Actuator by Bi-morph Type PZT to Realize Nano/Micro Mechanical Testing in MUTM)

  • 권현규;최성대;정선환
    • 한국기계가공학회지
    • /
    • 제5권1호
    • /
    • pp.45-50
    • /
    • 2006
  • This paper shows a new precision actuator of MUTM(miniature universal testing machine) for the testing of compression and tensile load on the MEMS materials and structures. The MUTM consists of a sample holder, an ultraprecision precision actuator(tranlation stage) and load sensor. The precision actuator has been developed for generating displacements with nanometer accuracy and a dynamic range of 1mm simultaneously. In this paper, it can be made by using the displacement property of bi-morph type PZT, which is able to extend the long range(stroke) according to cantilever size. However, it is not enough to be generated for compression and tensile load in miniature universal testing machine. Therefore, three dozen bi-morph type PZTs are used for generating the load. The load and displacement of the precision actuator are 35g and 0.4mm respectively.

  • PDF

원자간력 현미경을 이용한 대면적 표면 형상 측정 방법 (A large surface-shape measurement method by using Atomic Force Microscope)

  • 신영현;고명준;홍성욱;권현규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1543-1546
    • /
    • 2005
  • This paper presents a method to measure a large surface shape using atomic force microscopy, which has been used mostly for measuring over very tiny surfaces. Experiments are performed to measure a step height and a slope of a test sample. The proposed method is rigorously compared with the coordinate measuring machine. The repetition accuracy and the effects of the set point are also studied. The experimental results show that the proposed method is reliable and should be effective to measure both the nano-accuracy surface profile as well as the micro-accuracy global shape of a macro/micro parts using atomic force microscope.

  • PDF

AFM을 이용한 나노 인덴터 팁의 면적함수 결정에 관한 연구 (A Study on Determination of the Area Function of Nano Indenter Tip with AFM)

  • 박성조;이현우;한승우
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.145-152
    • /
    • 2004
  • Depth-sensing indentation is wifely used for evaluation of mechanical properties of thin films. It is generally accepted that the most significant source of uncertainty in nanoindentation measurement is the geometry of the indenter tip. Therefore the successful application of the technique requires accurate calibration of the indenter tip geometry. The direct measurement of geometry of a Berkovich indenter was determined using a atomic force microscope. The indentation geometrical calibration of contact area was performed by analyzing the indenter tip profile. The equations of area functions were proposed for nanoscale thin films..

High aspect ratio 팁의 비접촉모드에서의 측정 (Non-contact mode measurement of high aspect ratio tip)

  • 신영현;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.463-464
    • /
    • 2006
  • This paper present experimental results by non-contact mode Atomic Force Microscopy using high aspect ratio tips (HAR-T). We fabricated the carbon nanotube tip based on dielectrophoresis and the carbon nano probe by focused ion beam after dielectrophoretic assembling. In this paper, we measure AAO sample and trench structure to estimate HAR-T's performance and compared with conventional Si tip. We confirmed that results of HAR-T's performance in non contact mode was very superior than conventional tip.

  • PDF

XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가 (Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system)

  • 김동민;이동연;권대갑
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

길이 표준 소급성을 갖는 원자간력 현미경을 이용한 2차원 격자 시편 측정과 불확도 평가 (Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation)

  • 김종안;김재완;강주식;엄태봉
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.68-75
    • /
    • 2007
  • The pitch and orthogonality of two-dimensional (2D) gratings have been measured by using a metrological atomic force microscope (MAFM) and measurement uncertainty has been analyzed. Gratings are typical standard artifacts for the calibration of precision microscopes. Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2D gratings, it is important to certify the pitch and orthogonality of 2D gratings accurately for nano-metrology using precision microscopes. In the measurement of 2D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme was required to overcome some limitations of current MAFM such as nonnegligible thermal drift and slow scan speed. Two kinds of 2D gratings, each with the nominal pitch of 300 nm and 1000 nm, were measured using line scans for the pitch measurement of each direction. The expanded uncertainties (k = 2) of measured pitch values were less than 0.2 nm and 0.4 nm for each specimen, and those of measured orthogonality were less than 0.09 degree and 0.05 degree respectively. The experimental results measured using the MAFM and optical diffractometer were coincident with each other within the expanded uncertainty of the MAFM. As a future work, we also proposed another scheme for the measurements of 2D gratings to increase the accuracy of calculated peak positions.

압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계 (Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation)

  • 문준희;이봉구
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.