• Title/Summary/Keyword: Precision machining

Search Result 2,390, Processing Time 0.029 seconds

A Study on Accelerated Life Test of Hypoid Gear Rotary Reducer (하이포이드 회전감속기의 가속 수명시험 방법에 관한 연구)

  • Yoon, Sang-hwan;Beak, Kwon-in;Kim, Heonkeong;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.63-68
    • /
    • 2017
  • In order to process more complicated and higher-precision parts, generally, an additional axis for a machine tool is needed which was an approach to minimize the cost of tool modification. A table with a rotary reducer that can rotate through the axis of the gear system was employed to a machine tool to achieve the purpose of adding an extra motion axis. In general, the motion of the rotary reducer is driven by a worm/wheel or helical gear system, which is different from the hypoid helical gear structure that used in this research. Reliability of guarantee of high accurancy throughout the whole life cycle is on of the critical factors to evaluate a rotary reducer in this field. In this paper, in order to evaluate life-time of rotary reducer, a low-cost accelerated life test was developed to satisfy the demands of clients.

A Study on Graphite Electrode Wear in Sink EDM of HP1MA Steel (HP1MA 강의 형조 방전가공에서 흑연 전극 마모에 관한 연구)

  • Oh, Young-Jin;Jeong, Hyeon-Je;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.35-42
    • /
    • 2020
  • In discharge machining, material is removed by electrical discharge between the electrode and the workpiece. An important consideration in EDM is that the wear of the electrodes decreases the final precision of the workpiece. The edge wear of the electrodes proceeds very quickly because sparks occur more frequently at the edges with high local electrical strength. In this study, mold steel was discharged with a wedge-shaped graphite electrode to measure the edge wear of the electrode according to the depth. The electrode edge wear increased with depth during EDM and a wear model was developed. The model predicted that the edge wear can be reduced by approximately 70% using two electrodes instead of a single electrode. The model was supported by the experimental comparison of the dual electrode method and the single electrode method.

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

A Study on the minimizing of cutting depth in sub-micro machining (초정밀 절삭에서의 가공깊이 최소화에 관한연구)

  • 손성민;허성우;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

development of the High Utility Progressive Die for Sheet Metal Forming (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.231-235
    • /
    • 2000
  • Precision progressive die have used for above ten thousand pieces of lot size production part. In the field of design and making tool for press working, the progressive die for sheet metal (SPC, thickness : 2mm) is a specific division. In order to prevent the defects, the optimum design of the U-bending production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal pres working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

Development of the Circular lancing Type Progressive Die for STS 304 Sheet Metal Working (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • Ultra precision progressive die have used for above one million's lot size of production part. In the field of design and making tool for press working, the progressive die for sheet metal (STS 304, thickness : 0.5mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

FIB Machining Characteristic Analysis according to $Ga^+$ Ion Beam Current (집속이온빔의 전류변화에 따른 미세가공 특성분석)

  • Kang, Eun-Goo;Choi, Byeong-Yeol;Hong, Won-Pyo;Lee, Seok-Woo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2006
  • FIB equipment can perform sputtering and chemical vapor deposition simultaneously. It is very advantageously used to fabricate a micro structure part having 3D shape because the minimum beam size of ${\Phi}10nm$ and smaller is available. Since general FIB uses very short wavelength and extremely high energy, it can directly make a micro structure less than $1{\mu}m$. As a result, FIB has been probability in manufacturing high performance micro devices and high precision micro structures. Until now, FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis, IC error correction, etc. In this paper FIB-Sputtering and FIB-CVD characteristic analysis were carried out according to $Ga^+$ ion beam current that is very important parameter for minimizing the pattern size and maximizing the yield. Also, for FIB-Sputtering burr caused by redeposition of the substrate characteristic analysis was carried out.

Design of Special-purpose Machine Tool Based on a Multi-spindle Head (다축 스핀들 헤드 기반의 전용 공작기계 설계)

  • Maeng, Heeyoung;Park, Juwook;Park, Hongkeun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.675-681
    • /
    • 2015
  • When many holes on a plane are machined simultaneously, the positional precision and machining efficiency are very important. Multi-spindle heads are typical order making products of which the number of shafts and hole positions vary depending on the size or form of the product. For the automatic design of multi-spindle heads, the design modules for power transmission systems for drive, idle, and spindle shafts were developed, and a design technique the determining the optimum position and number of idle shafts according to gear positions was developed. In addition, for the precise determination of the multi-spindle head, the design methods for the guide planes of columns, and feed mechanisms were devised. In addition, the design modules for accurate clamping and automatic transportation mechanisms were developed. Finally, in order to simplify and standardize the design process, the design analysis and simulation verification modules are integrated.

Development of High Precision R/F Switch Connector Shell for Mobile Phone by Embossing and Burring Process (엠보싱 및 버링 공법을 이용한 휴대폰용 초정밀 알 에프 스위치 커넥터 쉘 개발)

  • Choi, H.S.;Shin, H.J.;Kim, B.M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.317-322
    • /
    • 2013
  • A radio frequency(R/F) switch connector is widely used in wireless devices such as mobile phone and navigator to check defects of the circuit board of product. The R/F switch connector shell plays a role in protecting the switch connector. Previously, this part was machined using a turning, which is time-consuming and has poor material utilization. Furthermore, the workpiece material of brass containing lead that has excellent machinability has environmentally regulated during recent years. The purpose of the current study was to develop the connector shell by forming through progressive dies including embossing, burring and forging process in order to achieve higher productivity and dimensional accuracy without tool failure. To accomplish this objective, a strip layout was designed and finite element (FE) analysis was performed for each step in the process. Try-out for the connector shell was conducted using progressive die design based on FE-analysis results. Dimensional accuracy of developed part was investigated by scanning electron microscopy. The result of the investigation for the dimensions of the formed connector shell showed that the required dimensional accuracy was satisfied. Moreover, productivity using the progressive die increased four times compared to previous machining process.