• Title/Summary/Keyword: Precision fit

Search Result 170, Processing Time 0.027 seconds

Effect of Stem Design on Contact Pressure and Stress Distribution of End-of-stem in Revision TKR (슬관절 재전치환술용 경골 삽입물 형상이 주대 말단부의 접촉압력과 응력 분포에 미치는 영향)

  • Kim, Yoon-Hyuk;Kwon, Oh-Soo;Park, Si-Mon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.126-134
    • /
    • 2006
  • In this study, the effect of stem-end design on contact pressure and stress distribution in revision TKR was investigated using finite element method. The finite element model of tibia, including the cortical bone, the cancellous bone and canal, was developed based on CT images. The implant models with various stem lengths, diameters, friction coefficients, and press-fit effects were considered. The results showed that the longer stem length, the stronger press-fit, the bigger stem diameter, and the higher friction coefficient increased both peak contact pressure and Von-Mises stress distributions. The results supported the clinical hypothesis that peak contact pressure and stress are related to the stem end pain. The results of this study will be useful to design the stem and reduce the end-of-stem pain in revision TKR.

Dimensional Analysis for the Front Chassis Module in the Auto Industry (자동차 프런트 샤시 모듈의 좌표 해석)

  • 이동목;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

The Effect of Shrink fit on the Thermal Crown Analysis in Twin Roll Strip Casting Process (쌍롤형 박판주조공정에서 열박음을 고려한 열적 크라운해석)

  • 박철민;박경진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.200-210
    • /
    • 2002
  • In twin roll strip casting process, coupled analyses of heat transfer and deformation for the cast roll are carried out by using the finite element program MARC to examine the thermal crown. Shrink fit effect and plastic deformation are considered. The results shows that the thermal crown is greatly influenced by shrink ft and that the thermal crown for POSCO Pilot Caster 2 Copper Roll has “M” shape. The effects of several factors on thermal crown are also investigated. The amount of thermal crown increases as heat flux, casting speed, steeve thickness and casting roll width increase and decreases as the casting roll diameter increases.

Integrated Analysis for the Shrink-Fitted Die with Multi stress-Ring of Dissimilar Materials (열박음된 이종재 다중보강링을 갖는 금형의 통합해석)

  • Yoh, Eun-Gu;Lee, Yong-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.40-46
    • /
    • 2001
  • An integrated analysis for the thermo-elastic deformation, fatigue, wear and brittle damage evolution of the shrink-fitted die with multi stress-ring of dissimilar materials is presented. A simple numerical algorithm for the moving elastic boundaries characterizing the contacts of the insert and multi stress-rings is presented. The initial stress distribution in the die due to shrink-fit is considered and the traction at the die surface contacting with the work piece is obtained by analyzing the elasto-plastic deformation of work piece. Elastic analysis of the separate-type die is performed and then the evolution of brittle damage, wear and fatigue life are predicted. This integrated analysis is applied to the extrusion die with two layers of stress-rings and the results are discussed in detail.

  • PDF

Development of Process of A Force Sensorless Interference fit Assembly Robot System using Sliding Perturbation Observer (슬라이딩 섭동관측기를 이용한 힘 센서리스 억지끼워맞춤 조립로봇시스템 공정개발)

  • Byun, Gyu Ho;Moon, Young Geun;Yoon, Sung Min;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.243-251
    • /
    • 2014
  • In inference fit assembly process of the industrial robot, it basically needs the force data. One of the typical methods to get the force data is attaching torque sensors on the robot arm joint or end effector. This is effective way to reduce time delay and to improve preciseness of force control, but this method has several problems. To solve that problem, this paper suggests method which measures assembly force without torque sensor by using the sliding perturbation observer(SPO) and assembly process based on SPO to assemble successfully in inference assembly

Finite Element Analysis of ICFPD Method for the Defect Detection of Railway Axle (철도차량 차축 결함에 대한 집중 유도 전위차법 탐상의 유한요소 해석)

  • Goo B.C.;Lim C.H.;Kwon S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.24-27
    • /
    • 2005
  • The NDT(Non-Destructive Testing) is valid fur the defect detection of rolling stocks because it can be used to detect defects in invisible places. For example, in case of wheelsets fatigue cracks are initiated in the wheel seat that suffers from fretting fatigue damage. But the conventional ICFPD method can not be applied to detect such cracks in press-fit area of the axle by some technical problems. In this study, we introduced a new ICFPD (Induced Current Focusing Potential Drop) method that can be applied in press-fit area of the axle. And we performed the finite element analysis of the new ICFPD method using measured electromagnetic properties of the wheel and axle. It seems that our approach is very useful f3r the detection of defects in invisible places.

  • PDF

FIT OF FIXTURE/ABUTMENT INTERFACE OF INTERNAL CONNECTION IMPLANT SYSTEM (내측연결 임플란트 시스템에서 고정체와 지대주 연결부의 적합에 관한 연구)

  • Lee Heung-Tae;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.192-209
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combination or internal connection type. Material and methods: In this study, each two randomly selected internal implant fixtures from ITI, 3i, Avana, Bicon, Friadent, Astra, and Paragon system were used. Each abutment was connected to the implant with 32Ncm torque value using a digital torque controller or tapping. All samples were cross-sectioned with grinder-polisher unit (Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc). Then optical microscopic and scanning electron microscopic(SEM) evaluations of the implant-abutment interfaces were conducted to assess quality of fit between the mating components. Results : 1) Generally, the geometry of the internal connection system provided for a precision fit of the implant/abutment into interface. 2) The most precision fit of the implant/abutment interface was provided in the case of Bicon System which has not screw. 3) The fit of the implant/abutment interface was usually good in the case of ITI, 3I and Avana system and the amount of fit of the implant/abutment interface was similar to each other. 4) The fit of the implant/abutment interface was usually good in the case of Friadent, Astra and Paragon system. The case of Astra system with the inclined contacting surface had the most Intimate contact among them. 5) Amount of intimate contact in the abutment screw thread to the mating fixture was larger in assembly with two-piece type which is separated screw from abutment such as Friadent, Astra and Paragon system than in that with one-piece type which is not seperated screw from abutment such as ITI, 3I and Avana system. 6) Amount of contact in the screw and the screw seat of abutment was larger in assembly of Friadent system than in asembly of Astra system of Paragon system. Conclusion: Although a little variation in machining accuracy and consistency was noted in the samples, important features of all internal connection systems were the deep, internal implant-abutment connections which provides intimate contact with the implant walls to resist micro-movement, resulting in a strong stable interface. From the results of this study, further research of the stress distribution according to the design of internal connection system will be required.

Precision and accuracy of CARS spectrometer for instantaneous temperature measurement (순간 온도 측정을 위한 CARS 분광기의 정밀 정확도 분석)

  • 박승남;박철융;한재원;길용석;정석호
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.348-356
    • /
    • 1996
  • A mobile CARS spectrometer is constructed to measure the instantaneous temperature of gases, of which software include the quick fit methods and a least square fitting method to obtain temperatures from the spectra. Two quick-fit-methods give smaller variance of temperatures than the least square fitting method even though they consume much shorter time to yield temperatures. The precision and accuracy of CARS temperature is measured in the graphite tube blackbody furnace in reference to a radiation pyrometer. The accuracy of the CARS temperature is $\pm$2% from 1000K to 2400K and the precision is $\pm$35K at 1600K with the most accurate quick-fit-method. As a demonstration of the instantaneous measurement, the spectrometer is applied for measurement of the turbulent combustion at a certain condition. eograms(HS) are made using a relatively small number of synthesized 2D images. The influence of aliasing artifacts caused by insufficient or improper sampling is presented, and a new sampling theory is proposed, which is used to making holographic stereograms. Also, the optical system for extension of viewing distance and viewing zone is proposed. Results of this analysis can be applied to design normal holographic stereograms and computer based holographic stereograms.

  • PDF

Effect of support thickness on the adaptation of Co-Cr alloy copings fabricated using selective laser melting (출력 지지대 두께가 선택적 레이저 용융법으로 제작된 금속 하부구 조물 적합도에 미치는 영향)

  • Jae-Hong Kim;Se-Yeon Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.67-73
    • /
    • 2023
  • Purpose: This in vitro study aimed to evaluate the clinical acceptability of precision of fit of the support thickness of Co-Cr alloy copings fabricated using selective laser melting (SLM). Methods: Thirty dental stone models of maxillary left molar abutments were manufactured, images were taken using a scanner, and a computer-aided design program was used to design the form of a conventional metal ceramic crown coping. Overall, 30 single copings were made from Co-Cr alloy using SLM and divided into three support radius groups (0.1, 0.25, and 0.35 mm) of 10 for each. Digitized data were superimposed with three-dimensional inspection software to quantitatively obtain the machinability of a ceramic crown coping, and visual differences were confirmed using a color map. The root mean square values of the ceramic crown coping group were statistically analyzed using one-way analysis of variance (α=0.05). Results: The precision of fit was superior with 0.25 mm compared with 0.1 mm and 0.35 mm, and the results exhibited significant differences (p<0.05). All specimens showed that various support thicknesses did not exceed the clinically permitted value of 120 ㎛, which mean that more than 0.1 mm and 0.35 mm of support radius for SLM was adequate. Conclusion: The support thickness of Co-Cr alloy restoration fabricated using SLM is shown to affect the adaptation.

Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC

  • Kim, Young-Rok;Park, Sang-Young;Park, Eun-Seo;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.275-285
    • /
    • 2012
  • In this study, we present preliminary results of precise orbit determination (POD) using satellite laser ranging (SLR) observations for International Laser Ranging Service (ILRS) Associate Analysis Center (AAC). Using SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2, the NASA/GSFC GEODYN II software are utilized for POD. Weekly-based orbit determination strategy is applied to process SLR observations and the post-fit residuals check, and external orbit comparison are performed for orbit accuracy assessment. The root mean square (RMS) value of differences between observations and computations after final iteration of estimation process is used for post-fit residuals check. The result of ILRS consolidated prediction format (CPF) is used for external orbit comparison. Additionally, we performed the precision analysis of each ILRS station by post-fit residuals. The post-fit residuals results show that the precisions of the orbits of LAGEOS-1 and LAGEOS-2 are 0.9 and 1.3 cm, and those of ETALON-1 and ETALON-2 are 2.5 and 1.9 cm, respectively. The orbit assessment results by ILRS CPF show that the radial accuracies of LAGEOS-1 and LAGEOS-2 are 4.0 cm and 5.3 cm, and the radial accuracies of ETALON-1 and ETALON-2 are 30.7 cm and 7.2 cm. These results of station precision analysis confirm that the result of this study is reasonable to have implications as preliminary results for administrating ILRS AAC.