DOI QR코드

DOI QR Code

Effect of support thickness on the adaptation of Co-Cr alloy copings fabricated using selective laser melting

출력 지지대 두께가 선택적 레이저 용융법으로 제작된 금속 하부구 조물 적합도에 미치는 영향

  • Jae-Hong Kim (Department of Dental Laboratory Science, College of Health Science, Catholic University of Pusan) ;
  • Se-Yeon Kim (Department of Dental Laboratory Science, College of Health Science, Catholic University of Pusan)
  • 김재홍 (부산가톨릭대학교 보건과학대학 치기공학과) ;
  • 김세연 (부산가톨릭대학교 보건과학대학 치기공학과)
  • Received : 2023.08.14
  • Accepted : 2023.09.21
  • Published : 2023.09.30

Abstract

Purpose: This in vitro study aimed to evaluate the clinical acceptability of precision of fit of the support thickness of Co-Cr alloy copings fabricated using selective laser melting (SLM). Methods: Thirty dental stone models of maxillary left molar abutments were manufactured, images were taken using a scanner, and a computer-aided design program was used to design the form of a conventional metal ceramic crown coping. Overall, 30 single copings were made from Co-Cr alloy using SLM and divided into three support radius groups (0.1, 0.25, and 0.35 mm) of 10 for each. Digitized data were superimposed with three-dimensional inspection software to quantitatively obtain the machinability of a ceramic crown coping, and visual differences were confirmed using a color map. The root mean square values of the ceramic crown coping group were statistically analyzed using one-way analysis of variance (α=0.05). Results: The precision of fit was superior with 0.25 mm compared with 0.1 mm and 0.35 mm, and the results exhibited significant differences (p<0.05). All specimens showed that various support thicknesses did not exceed the clinically permitted value of 120 ㎛, which mean that more than 0.1 mm and 0.35 mm of support radius for SLM was adequate. Conclusion: The support thickness of Co-Cr alloy restoration fabricated using SLM is shown to affect the adaptation.

Keywords

Acknowledgement

This paper was supported by 2021 RESEARCH FUND offered from Catholic University of Pusan.

References

  1. O'Brien WJ. Dental materials and their selection. 4th ed. Quintessence Publishing, 2008. p. 243-252.
  2. Park JY, Kim HY, Kim JH, Kim JH, Kim WC. Comparison of prosthetic models produced by traditional and additive manufacturing methods. J Adv Prosthodont. 2015;7:294-302. https://doi.org/10.4047/jap.2015.7.4.294
  3. Fathi HM, Al-Masoody AH, El-Ghezawi N, Johnson A. The accuracy of fit of crowns made from wax patterns produced conventionally (hand formed) and via CAD/CAM technology. Eur J Prosthodont Restor Dent. 2016;24:10-17.
  4. Prabhu R, Prabhu G, Baskaran E, Arumugam EM. Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up. J Indian Prosthodont Soc. 2016;16:193-197. https://doi.org/10.4103/0972-4052.176526
  5. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28:44-56. https://doi.org/10.4012/dmj.28.44
  6. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137:1289-1296. https://doi.org/10.14219/jada.archive.2006.0389
  7. Ortorp A, Jonsson D, Mouhsen A, Vult von Steyern P. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater. 2011;27:356-363. https://doi.org/10.1016/j.dental.2010.11.015
  8. van Noort R. The future of dental devices is digital. Dent Mater. 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
  9. Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119:481-487. https://doi.org/10.1016/j.prosdent.2017.04.007
  10. Stawarczyk B, Eichberger M, Hoffmann R, Noack F, Schweiger J, Edelhoff D, et al. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral Health Dent Manag. 2014;13:446-452.
  11. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater. 2014;30:e79-e88. https://doi.org/10.1016/j.dental.2014.01.008
  12. Petzold R, Zeilhofer HF, Kalender WA. Rapid protyping technology in medicine--basics and applications. Comput Med Imaging Graph. 1999;23:277-284. https://doi.org/10.1016/S0895-6111(99)00025-7
  13. Huang Z, Zhang L, Zhu J, Zhang X. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. J Prosthet Dent. 2015;113:623-627. https://doi.org/10.1016/j.prosdent.2014.10.012
  14. Zeng L, Zhang Y, Liu Z, Wei B. Effects of repeated firing on the marginal accuracy of Co-Cr copings fabricated by selective laser melting. J Prosthet Dent. 2015;113:135-139. https://doi.org/10.1016/j.prosdent.2014.09.004
  15. Yao T, Deng Z, Zhang K, Li S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Compos B Eng. 2019;163:393-402. https://doi.org/10.1016/j.compositesb.2019.01.025
  16. Monroy K, Delgado J, Ciurana J. Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process. Procedia Eng. 2013;63:361-369. https://doi.org/10.1016/j.proeng.2013.08.227
  17. Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13:196-203. https://doi.org/10.1108/13552540710776142
  18. Yager S, Ma J, Ozcan H, Kilinc HI, Elwany AH, Karaman I. Mechanical properties and microstructure of removable partial denture clasps manufactured using selective laser melting. Addit Manuf. 2015;8:117-123. https://doi.org/10.1016/j.addma.2015.09.005
  19. Ren XW, Zeng L, Wei ZM, Xin XZ, Wei B. Effects of multiple firings on metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J Prosthet Dent. 2016;115:109-114. https://doi.org/10.1016/j.prosdent.2015.03.023
  20. Kaleli N, Ural C, Ozkoylu G, Duran I. Effect of layer thickness on the marginal and internal adaptation of laser-sintered metal frameworks. J Prosthet Dent. 2019;121:922-928. https://doi.org/10.1016/j.prosdent.2018.08.018
  21. Kim DY. Evaluation of fits of metal copings fabricated by using selective laser melting at various angles. J Prosthet Dent. 2022;128:415-420. https://doi.org/10.1016/j.prosdent.2020.08.029
  22. Jeong W, Kwon YS, Kim D. Development of a metal 3D printer using laser powder deposition and process optimization for fabricating titanium alloy parts. J Korean Soc Laser Process. 2015;18:1-5.
  23. Gan MX, Wong CH. Practical support structures for selective laser melting. J Mater Process Technol. 2016;238:474-484. https://doi.org/10.1016/j.jmatprotec.2016.08.006
  24. Park CK. Development of an automatic classification system for healthcare parts for metal printing [master's thesis]. Seoul: Seoul National University of Science and Technology, 2022.
  25. Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater. 2008;24:1311-1315. https://doi.org/10.1016/j.dental.2008.02.011
  26. Tsitrou EA, Northeast SE, van Noort R. Evaluation of the marginal fit of three margin designs of resin composite crowns using CAD/CAM. J Dent. 2007;35:68-73. https://doi.org/10.1016/j.jdent.2006.04.008
  27. Kim KB, Kim JH, Kim WC, Kim JH. Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J Prosthet Dent. 2014;112:1432-1436. https://doi.org/10.1016/j.prosdent.2014.07.002
  28. Vigolo P, Fonzi F. An in vitro evaluation of fit of zirconium-oxide-based ceramic four-unit fixed partial dentures, generated with three different CAD/CAM systems, before and after porcelain firing cycles and after glaze cycles. J Prosthodont. 2008;17:621-626. https://doi.org/10.1111/j.1532-849X.2008.00366.x
  29. Pak HS, Han JS, Lee JB, Kim SH, Yang JH. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns. J Adv Prosthodont. 2010;2:33-38. https://doi.org/10.4047/jap.2010.2.2.33
  30. Hunter AJ, Hunter AR. Gingival margins for crowns: a review and discussion. Part II: discrepancies and configurations. J Prosthet Dent. 1990;64:636-642. https://doi.org/10.1016/0022-3913(90)90286-L
  31. Foster LV. Failed conventional bridge work from general dental practice: clinical aspects and treatment needs of 142 cases. Br Dent J. 1990;168:199-201. https://doi.org/10.1038/sj.bdj.4807133
  32. Colpani JT, Borba M, Della Bona A. Evaluation of marginal and internal fit of ceramic crown copings. Dent Mater. 2013;29:174-180. https://doi.org/10.1016/j.dental.2012.10.012
  33. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971;131:107-111. https://doi.org/10.1038/sj.bdj.4802708
  34. Gulker I. Margins. N Y State Dent J. 1985;51:213-215, 217.
  35. Sorensen SE, Larsen IB, Jorgensen KD. Gingival and alveolar bone reaction to marginal fit of subgingival crown margins. Scand J Dent Res. 1986;94:109-114. https://doi.org/10.1111/j.1600-0722.1986.tb01373.x
  36. Assif D, Rimer Y, Aviv I. The flow of zinc phosphate cement under a full-coverage restoration and its effect on marginal adaptation according to the location of cement application. Quintessence Int. 1987;18:765-774.
  37. Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int J Prosthodont. 1997;10:478-484.
  38. Moldovan O, Luthardt RG, Corcodel N, Rudolph H. Three-dimensional fit of CAD/CAM-made zirconia copings. Dent Mater. 2011;27:1273-1278. https://doi.org/10.1016/j.dental.2011.09.006
  39. Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J Prosthet Dent. 1992;67:594-599. https://doi.org/10.1016/0022-3913(92)90153-2
  40. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater. 2018;9:17.
  41. Loh LE, Chua CK, Yeong WY, Song J, Mapar M, Sing SL, et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf. 2015;80:288-300. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.014