• Title/Summary/Keyword: Precision Screw

Search Result 270, Processing Time 0.023 seconds

Characteristics Design on Helix Angle of the Extruder Screw (압출용 스크루의 나선각에 대한 특성설계)

  • 최부희;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.706-709
    • /
    • 1997
  • Extruders are the heart of the polymer processing industry. The single most important mechanical element of a screw extruder is the screw. The proper design of the geometriy of the extruder screw is of crucial importance to the proper functioning of the extruder. If material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, characteristics design on helix angle of the extruder screw. This paper presents strength of the screw flight, optimum helix angle versus dimensionless down channel pressure gradient, optimum helix angle versus the power law index in simultaneous optimization, volumetric efficiency versus helix angle at various number of flights and power consumption versus helix angle in the barrel of screw extruder.

  • PDF

A Study on Machining of the Self-Wiping Co-Rotating Twin Screw (밀폐형 동회전 2축 스크류의 제작에 관한 연구)

  • 최부희;이상혁;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1426-1429
    • /
    • 2003
  • This paper describes screw tool design and machining method witch is able to design tool profile and 3-dimensional geometry for screws in self-wiping co-rotating twin screw extruder. The geometric features of screws for co-rotating twin screw extruders are developed from kinematic principles. Closely self-wiping screw segments are manufactured in universal milling machine by using designed screw tools. It is shown that experimental results verified the closely intermeshing condition in twin screw.

  • PDF

유한차분법을 이용한 볼스크류 시스템의 열팽창 해석

  • 박정균;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.101-104
    • /
    • 1991
  • Bal1 screw systems has been used for positioning elements of machine tools. In order to maintain high rigidity and accuracy, preload is applied between nut and screw. However, large amount of preload increases frictional heat. Temperature rises remarkably at high speed notion, Thermal expansion degrades positioning accuracy, In this paper, finite differance method is applied to compute temperature distributions and thermal expansions of ball screw systems according to preload condition and rotational steed. Some simulation results show that the developed methodology is good to study thermal expansion of ball screw systems.

  • PDF

Thermal Expansion Analysis of the Ball Screw System by Finite Difference Methods (유한차분법을 이용한 볼스크류 시스템의 열팽창 해석)

  • Jeong, Seong-Jong;Park, Jeong-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.44-57
    • /
    • 1992
  • Ball screw systems have been used for positioning elements of machine tools and precision tables. In order to maintain the high rigidity and accuracy, a certain amount of preload is applied between the nut and the screw of ball screw systems. However, large amount of the preload oncreases the frictional heat. The temperature rises remarkably at the high speed motion, and the thermal expansion degrades the positioning accuracy. In this paper, a finite difference method is applied to analyse temperature distributions and thermal expansions of the ball screw system according to preload conditions and rotational speeds. Some simulation results show that the developed methodology is appropriate to study the thermal expansion characteristics of ball screw systems.

  • PDF

Design and Analysis of Illumination Optics for Image Uniformity in Omnidirectional Vision Inspection System for Screw Threads (나사산 전면검사 비전시스템의 영상 균일도 향상을 위한 조명 광학계 설계 및 해석)

  • Lee, Chang Hun;Lim, Yeong Eun;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Precision screws have a wide range of industrial applications such as electrical and automotive products. To produce screw threads with high precision, not only high precision manufacturing technology but also reliable measurement technology is required. Machine vision systems have been used in the automatic inspection of screw threads based on backlight illumination, which cannot detect defects on the thread surface. Recently, an omnidirectional inspection system for screw threads was developed to obtain $360^{\circ}$ images of screws, based on front light illumination. In this study, the illumination design for the omnidirectional inspection system was modified by adding a light shield to improve the image uniformity. Optical simulation for various shield designs was performed to analyze image uniformity of the obtained images. The simulation results were analyzed statistically using response surface method, from which optical performance of the omnidirectional inspection system could be optimized in terms of image quality and uniformity.

The effect of pre-load and fatigue life for one-level pedicle screw system (단분절 척추경 나사못의 피로수명과 Pre-Load의 영향)

  • 김병일;이효재;송정일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1298-1301
    • /
    • 2003
  • The purpose of this research is to evaluate the effect of pre-load and fatigue life of the distracted one-level pedicle screw system. A spring, which acted as a substitute of the ligament, was installed in the one-level pedicle screw system before testing. The static and fatigue properties are now being tested, which includes 6mm rod to 6mm screw, 6mm rod to 6.5mm screw and 6.35mm rod to 6.5mm screw, under pre-load. Until now as test data were analyzed, 6mm rod to 6.5mm screw was found to have the best performances of stillness and fatigue lift, while 6mm rod to 6mm screw showed the shortest fatigue life. If the stiffness of screw was bigger than that of rod. the fatigue life was prolonged. The fatigue life of the distracted pedicle screw was proved to be shorter than that of the one-level pedicle screw system. So the fatigue life was shortened because of the effect of the spring on the flexibility and stiffness of the rod. In order to obtain the stability of the pedicle screw, more tests are under doing on this topic.

  • PDF

A Study on Effect of Various Cooling Methods in Motion of High-Precision Ball Screw (고속 고정밀 볼 스크류 구동에 따른 강제 냉각방식의 효과에 관한 연구)

  • Kim, Su-Sang;Xu, Zhe-Zhu;Kim, Hyun-Koo;Lyu, Sung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • Ball screw system is widely used as a precision mechanical linear actuator that translates rotational motion to linear motion for its high efficiency, great stiffness and long life. Recently, according to the requirements of high accuracy and stiffness, the pre-load on the ball screw which means of remove the backlash in the ball screw is usually used. Because of the preload which means the frictional resistance between the screw and nut, becomes a dominating heat source and it generates thermal deformation of ball screw which is the reason for low accuracy of the positioning decision. There are several methods to solve the problem that includes temperature control, thermal stable design and error compensation. In the past years, researchers focused on the error compensation technique for its ability to correct ball screw error effectively rather than the capabilities of careful machine design and manufacturing. Significant amounts of researches have been done to real-time error compensation. But in this paper, we developed a series of cooling methods to get thermal equilibrium in the ball screw system. So we find the optimum cooling type for improving positioning error which caused by thermal deformation in the ball screw system.

Improvement of the Optical Characteristics of Vision System for Precision Screws Using Ray Tracing Simulation (광선추적을 이용한 정밀나사 비전검사용 광학계의 결상특성 향상)

  • Baek, Soon-Bo;Lee, Ki-Yean;Joo, Won-Jong;Park, Keun;Ra, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1094-1102
    • /
    • 2011
  • Recent trends for the miniaturization and weight reduction of portable electronic parts is the use of subminiature components. Assembly of the miniaturized components requires subminiature screws of which pitch sizes are in a micrometer scale. To produce such a subminiature screw with high precision threads, not only a precision forming technology but also high-precision measurement technique is required. In the present work, a vision inspection system is developed to measure the thread profile of a subminiature screw. Optical simulation based on a ray tracing method is used to design and analyze the optical system of the vision inspection apparatus. Through this simulation, optical performance of the developed vision inspection system is optimized. The image processing algorithm for the precision screw inspection is also discussed.