• 제목/요약/키워드: Precipitation behavior

검색결과 333건 처리시간 0.021초

Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model (SWAT을 이용한 기후변화가 충주댐 및 조정지댐 저수량에 미치는 영향 평가)

  • Jeong, Hyeon Gyo;Kim, Seong-Joon;Ha, Rim
    • Journal of Korea Water Resources Association
    • /
    • 제46권12호
    • /
    • pp.1235-1247
    • /
    • 2013
  • This study is to evaluate the climate change impact on future storage behavior of Chungju dam($2,750{\times}10^6m^3$) and the regulation dam($30{\times}10^6m^3$) using SWAT(Soil Water Assessment Tool) model. Using 9 years data (2002~2010), the SWAT was calibrated and validated for streamflow at three locations with 0.73 average Nash-Sutcliffe model Efficiency (NSE) and for two reservoir water levels with 0.86 NSE respectively. For future evaluation, the HadCM3 of GCMs (General Circulation Models) data by scenarios of SRES (Special Report on Emission Scenarios) A2 and B1 of the IPCC (Intergovernmental Panel on Climate Change) were adopted. The monthly temperature and precipitation data (2007~2099) were spatially corrected using 30 years (1977~2006, baseline period) of ground measured data through bias-correction, and temporally downscaled by Change Factor (CF) statistical method. For two periods; 2040s (2031~2050), 2080s (2071~2099), the future annual temperature were predicted to change $+0.9^{\circ}C$ in 2040s and $+4.0^{\circ}C$ in 2080s, and annual precipitation increased 9.6% in 2040s and 20.7% in 2080s respectively. The future watershed evapotranspiration increased up to 15.3% and the soil moisture decreased maximum 2.8% compared to baseline (2002~2010) condition. Under the future dam release condition of 9 years average (2002~2010) for each dam, the yearly dam inflow increased maximum 21.1% for most period except autumn. By the decrease of dam inflow in future autumn, the future dam storage could not recover to the full water level at the end of the year by the present dam release pattern. For the future flood and drought years, the temporal variation of dam storage became more unstable as it needs careful downward and upward management of dam storage respectively. Thus it is necessary to adjust the dam release pattern for climate change adaptation.

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제30권4B호
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.

Leaching Behavior of the Residues of Carbofuran, Bentazon, and TCAB in Soil (Carbofuran, Bentazon 및 TCAB 잔류물의 토양중 용탈)

  • Lee, Jae-Koo;Oh, Kyeong-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • 제12권1호
    • /
    • pp.9-17
    • /
    • 1993
  • The leaching behavior of $^{14}C-carbofuran$, $^{14}C-bentazon$, and $^{14}C-3,3,4,4'-tetrachloroazobenzene(TCAB)$ in the forms of freshly treated, 3-month-aged, and 6-month-aged residues, respectively, was investigated in a loamy soil column system. The degradation and mobility of pesticides in soil and the possibility of the contamination of groundwater were followed by this approach: The ambient temperature of $15{\pm}2^{\circ}C$, irrigation by the constant-head method on soil columns, and leaching with 1332 ml of simulated precipitation during 90 days. While the fresh residues of $^{14}C-carbofuran$ and $^{14}C-bentazon$ were very mobile, the aged ones were remarkably reduced in their mobility. Fresh and aged residues of $^{14}C-TCAB$ were very immobile, instead. 3-Keto carbofuran phenol(2,3-dihydro-2,2-dimethyl-3-oxo-7-benzofuranol) was the major degradation product present in the leachate from the soil column containing freshly treated $^{14}C-carbofuran$, while no metabolites could be detected in the leachates from the columns containing $^{14}C-bentazon$ or $^{14}C-TCAB$.

  • PDF

Study on the Relationship Between Microstructure and Creep-Rupture Behavior of GTD 111 (Ni기 초내열합금 GTD 111의 크리프 파단에 미치는 미세조직의 영향)

  • Sin, Hyeon-Jong;Kim, In-Su;Lee, Jae-Hyeon;Heo, Seong-Gang;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • 제11권1호
    • /
    • pp.8-14
    • /
    • 2001
  • Microstructural evolution and creep failure behavior of GTD 111 have been studied. Solidification and precipitation behaviors of the alloy during casting have been analyzed by microstructural observations. It has been found that MC carbides solidify just before the $\gamma$/$\gamma$' eutectic solidification. The ηphase was found to be formed by transformation of Ti-rich $\gamma$'phase. PFZ has formed in the vicinity of the transformed $\eta$ phase. A few MC particles, which have been identified as TaC, precipitated within the PFZ. Creep failure along grainboundary was dominant at and above $871^{\circ}C$. Creep failure above$ 871^{\circ}C$ was caused by the propagation of surface cracks and internal cracks. Creep crack has initiated at the microporosities embedded on the grainboundary. The $\eta$phase and PFZ have been found to be little or no effect on creep crack initiation.

  • PDF

Effect of Heat Treatment on the Formation Behavior of Intermetallic Compound Layer in Fusion Bonding of Cast Iron and Al Alloy (용융 접합한 주철 - Al 합금의 금속간화합물 층 형성 거동에 미치는 열처리의 영향)

  • Kang, Sung-Min;Han, Kwang-Sik;Kang, Yong-Joo;Kim, Kwang-Won;Im, Ye-Ra;Moon, Ji-Sun;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • 제32권1호
    • /
    • pp.50-56
    • /
    • 2012
  • Fusion bonding of cast iron and Al alloy is an effective way to improve the properties such as low inertia, high efficiency and corrosion resistance in machinery parts. In case of fusion bonding, intermetallic compound layers are formed at the interface between cast iron and Al alloy interface. It is important to control the intermetallic compound layers for improving bonding strength. The formation behavior of intermetallic compound layer by heat treatment has been investigated. Heat treatment was performed at temperature from $600^{\circ}C$ to $800^{\circ}C$ with $100^{\circ}C$ interval for an hour to investigate the phase transformation during heat treatment. Heat treated specimens were analyzed by using FE-SEM, EPMA and EDS. The EPMA/WDS results revealed that various phases were formed at the interface, which exhibited 4 distinct intermetallic compound layers such as ${\tau}_6-Al_{4.5}FeSi$, ${\tau}_2-Al_3FeSi$, ${\tau}_{11}-Al_5Fe_2Si $and ${\eta}-Al_5Fe_2$. Also, fine precipitation of ${\tau}_1-Al_2Fe_3Si_3$ phase was formed between ${\tau}_{11}$ and ${\eta}$ layer. The phase fraction in intermetallic compound layer was changed by heat treatment temperature. At $600^{\circ}C$, intermetallic compound layer of ${\tau}_6$ phase was mainly formed with increasing heat treatment time. With increasing heat treatment temperature to $800^{\circ}C$, however, ${\tau}_2$ phase was mainly distributed in intermetallic compound layer. ${\tau}_1$ phase was remarkably decreased with increasing heat treatment time and temperature.

Mineralogical Changes Caused by the Weathering of Tailings Deposited on the Riverside of the Nakdong River, Bonghwa, Korea (봉화군 일대 낙동강변에 퇴적된 광미의 풍화에 따른 광물학적 변화)

  • Kim, Min-Jung;Kim, Yeong-Kyoo;Park, Hyoung-Sim;Jeon, Sang-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • 제21권4호
    • /
    • pp.331-339
    • /
    • 2008
  • In the upstream of Nakdong river in Bonghwa-gun, Gyeongsangbuk-do, certain areas of riverside were found to be covered by weathered mine tailings which were assumed to be migrated and deposited by flood. This study was conducted to investigate the formation and characteristics of the secondary minerals from tailings and related leaching behavior of heavy metals in the severely weathered tailing deposits by river waters. Quartz, feldspar, micas, chlorite, hornblende, talc, pyroxene (johannsenite), pyrite, and calcite were identified as primary minerals by XRD. Kaolinite can be formed by the weathering of tailings, but considering the short period of weathering time, kaolinite in the deposits is considered to be from unweathered tailings or moved from soils. The secondary minerals such as goethite, gypsum, basanite, and jarosite were also identified. The formation of the secondary minerals was affected by the species of primary minerals and pH conditions. The weathering of pyrite produced sulfate minerals such as gypsum, basanite, jarosite, and also goethite. Mn oxide was also identified by SEM, coated on the primary minerals such as quartz. This Mn oxide was poorly crystalline and thought to be the weathering product of johannsenite (Mn-pyroxene). The Fe and Mn oxides are the main minerals determining the brown/red and black colors of weathered tailings. EDS results showed that those oxides contain high concentrations of Pb, Zn, and As, indicating that, in the river, the formation of Fe and Mn oxides can control the behavior and leaching of heavy metals by co-precipitation or adsorption.

Analysis of Water Use Strategies of Two Co-occurring Mature Tree Species, Pinus densiflora and Quercus serrata (생육공간을 공유하는 소나무와 졸참나무의 수분 이용 전략 비교 분석)

  • Lee, Kiwoong;Lee, Bora;Cho, NangHyun;Lim, Jong-Hwan;Kim, Eun-Sook
    • Journal of Korean Society of Forest Science
    • /
    • 제111권3호
    • /
    • pp.385-393
    • /
    • 2022
  • The study was carried out in Pocheon-si, Gyeonggi-do from March to December in 2019 to compare and analyze the water use strategies of two co-occurring tree species, Pinus densiflora and Quercus serrata, both native and dominant in Korea's forest ecosystems. Through seasonal changes, we measured environmental variables such as air temperature, relative humidity, precipitation, net radiation, and soil water content. Sap flow densities of P. densiflora (n = 6) and Q. serrata (n = 3) were measured, along with environmental variables. The maximum sa pflow density for Q. serrata almost doubled that of P. densiflora during the growing season, while the maximum sap flow densities in both Q. serrata and P. densiflora peaked in September and August, respectively. Net radiation and vapor pressure deficit, but not air temperature, were the major environmental variables significantly affecting sap flow density. Analysis of hysteresis revealed that P. densiflora exhibited isohydric behavior, while Q. serrata showed anisohydric behavior. Analysis of crown conductance revealed similar trends as sap flow density, i.e., the crown conductance of Q. serrata was twice that of P. densiflora during the growing period. The study compared and analyzed the water use strategies between two co-occurring species. To better understand the underlying mechanisms of water use, more research on both physiological and morphological traits are needed.

Analysis of Hydraulic behavior in Unsaturated Soil Slope for the Boundary Condition and Hysteresis of SWCC (경계 조건과 불포화 함수 특성 곡선의 이력에 따른 불포화 토사 사면의 수리적 거동 분석)

  • Lee, Eo-Ryeong;Park, Hyun-Su;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • 제39권1호
    • /
    • pp.15-25
    • /
    • 2023
  • Recent weather changes have led to an increase in heavy rainfall resulting in frequent large-scale slope failures. To minimize damage to life and property, a measurement system is used in slope failure warning systems. However, understanding the slope failure behavior is difficult as the measurement system only measures a specific point. Therefore, numerical analysis must be p erformed with the measurement system. The soil water characteristic curve (SWCC) drying curve and boundary conditions that consider evapotranspiration and precipitation have been applied to numerical analysis, but the hysteresis of SWCC affects the numerical analysis results. To address this, a new evapotranspiration calculation method is proposed and applied to boundary conditions, and the measurement data are compared with the results of the numerical analysis. This method takes into account the different infiltration behaviors on evapotranspiration according to the drying and wetting curves of the SWCC, and allows for a more rational prediction of water movement on unsaturated slopes.

Sorption Studies of $Cd^{2+}$ on Calcite: Kinetics and Reversibility (방해석의 $Cd^{2+}$ 흡착현상에 대한 연구)

  • Yoon, Hyeon;Reeder, Richard J.
    • Journal of the Mineralogical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.104-113
    • /
    • 2002
  • The sorption of Cd$^{2+}$ on calcite was studied in aqueous solutions of several electrolytes. The Cd$^{2+}$ concentration, 10$^{-8}$ M, was kept well below saturation with respect to CdCO$_3$(s). Sorption behavior of Cd$^{2+}$ in different ionic strengths of NaClO$_4$solutions shows that sorption is independent of ionic strength. This result suggests that Cd$^{2+}$ sorption on calcite surface is of a specific nature, and adsorption is controlled by an inner-sphere type of surface complex. Two stages in the sorption behavior could be identified: an initial rapid uptake, followed by slower uptake reaching a maximum steady state by 145 hrs. No evidence was observed for surface precipitation, although it can not be entirely ruled out. Desorption of Cd$^{2+}$ from the calcite surface after resuspension into Cd-free solution is initially very rapid, but depends partly on the previous sorption history. Desorption behavior of Cd$^{2+}$ show that an initial rapid desorption followed either by slow uptake reaching a maximum, as in the adsorption experiments, or slowing desorption to reach a steady state minimum. This irreversible behavior of Cd$^{2+}$ sorption and desorption may act as one of the controls for regulating the mobility of dissolved Cd$^{2+}$ natural aqueous systems. Calculated adsorption partition coefficients suggest that overall sorption and desorption process in the concentration range are controlled by d single mechanism.ingle mechanism.

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • 제56권4호
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.