방해석의 $Cd^{2+}$ 흡착현상에 대한 연구

Sorption Studies of $Cd^{2+}$ on Calcite: Kinetics and Reversibility

  • Yoon, Hyeon (Korea Basic Science Institute) ;
  • Reeder, Richard J. (Department of Earth and Space Sciences State University of New York at Stony Brook)
  • 발행 : 2002.06.01

초록

방해석 표면에 의한 C$d^{2+}$의 흡착연구를 하였다. 흡착실험에서 사용한 Cd의 농도는 $10^{-8}$ 로서 CdCO$_3$(s)의 침전농도 보다 낮은 농도를 유지하도록 조절하였다. NaClO$_4$를 전해질로 사용하여 이온농도를 달리 한 실험 결과 C$d^{2+}$의 흡착은 용액의 이온세기와는 무관한 것으로 나타났다. 이는 C$d^{2+}$의 방해석 표면 흡착이 특징적인 성질을 갖고 inner sphere surface complex를 형성한다는 것을 암시한다. 흡착반응은 초기의 매우 빠른 흡착시기와 후기의 지속적인 느린 흡착시기의 2단계로 구분되었다. 특히, 후기의 느린 흡착시기에는 약 145시간 경과 후 최대정상상태 (steady state maximum)에 도달하였다. 본 연구에서 사용한 C$d^{2+}$의 농도가 낮아 방해석 표면에 CdCO$_3$(s)의 침전 형성에 의한 반응은 고려되지 않았다. 방해석 표면으로부터 C$d^{2+}$의 탈착반응은 일정시간의 흡착 반응이 경과된 후 초기 흡착 실험 시와 같은 농도의 과포화 용액을 사용하여 C$d^{2+}$을 흡착한 방해석이 새로운 용액에 재 평형을 이루도록 반응을 유도하였다. 일반적으로 탈착실험에서는 새로운 과포화용액에 방해석을 넣자마자 매우 빠른 탈착반응을 보여준다. 그 이후는 2가지의 다른 경향성을 보여주며 새로운 평형에 도달하는 것으로 나타난다. 초기의 빠른 탈착반응 시기 뒤 느린 흡착반응이 지속적으로 일어나 일정 시간 경과 후 다시 평형을 이루거나, 느린 탈착반응이 계속적으로 지속되어 일정 시간 경과 후 새로운 평형을 이루는 2가지로 나타났다. 이러한 부분적으로 비가역적인 흡착 반응과 탈착반응은 실제 자연계에서 C$d^{2+}$의 유동성을 결정짓는 매우 중요한 인자로 작용할 것으로 생각된다. 흡착 반응 및 탈착반응의 평형상수 값은 이들 반응이 서로 동일한 기작에 의하여 조절됨을 보여주었다.

The sorption of Cd$^{2+}$ on calcite was studied in aqueous solutions of several electrolytes. The Cd$^{2+}$ concentration, 10$^{-8}$ M, was kept well below saturation with respect to CdCO$_3$(s). Sorption behavior of Cd$^{2+}$ in different ionic strengths of NaClO$_4$solutions shows that sorption is independent of ionic strength. This result suggests that Cd$^{2+}$ sorption on calcite surface is of a specific nature, and adsorption is controlled by an inner-sphere type of surface complex. Two stages in the sorption behavior could be identified: an initial rapid uptake, followed by slower uptake reaching a maximum steady state by 145 hrs. No evidence was observed for surface precipitation, although it can not be entirely ruled out. Desorption of Cd$^{2+}$ from the calcite surface after resuspension into Cd-free solution is initially very rapid, but depends partly on the previous sorption history. Desorption behavior of Cd$^{2+}$ show that an initial rapid desorption followed either by slow uptake reaching a maximum, as in the adsorption experiments, or slowing desorption to reach a steady state minimum. This irreversible behavior of Cd$^{2+}$ sorption and desorption may act as one of the controls for regulating the mobility of dissolved Cd$^{2+}$ natural aqueous systems. Calculated adsorption partition coefficients suggest that overall sorption and desorption process in the concentration range are controlled by d single mechanism.ingle mechanism.

키워드

참고문헌

  1. Comans, R.N., Haller, M., and de Preter, Peter (1991) Sorption of cesium on illite: Nonequilibrium behavior and reversibility. Geochim. Cosmochim. Acta, 55, 433-440.
  2. Cowan, C.E., Zachara, J.M., and Resch, C. T. (1990) Solution effects on the surface exchange of selenite on calcite.Geochim. Cosmochim. Acta, 54, 2223-2234.
  3. Curti, E. (1999) Coprecipitation of radionuclides with calcite: Estimation of partition coefficients based on a review of raboratory investigations and geochemical data. Applied geochemistry,14, 433-445.
  4. Davis, J.A., Fuller, C.C., and Cook, A.D. (1987) A model for trace metal sorption processes at the calcite surface: Adsorption of Cd$^2+$ and subsequent solid solution formation. Geochim. Cosmochim. Acta, 51, 1477-1490.
  5. Dromgoole, E.L. and Walter, L.M. (1990) Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature and solution chemistry. Chem. Geology, 81, 311-336.
  6. Farley, K.J., Dzombak, D.A., and Morel, F.M.M. (1984) A surface precipitation model for the sorption of cations on metal oxides. J. Colloid Interface Sci., 106, 226-242.
  7. Fisher, N.S., Bohe, M., and Teyssie, J.L. (1984) Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phytoplankters. Mar. Ecol. Prog. Series, 18, 201-213.
  8. Fuller, C.C. and Davis, lA. (1987) Processes and kinetics of Cd$^2+$ sorption by a calcareous aquifer sand. Geochim. Cosmochim. Acta, 51, 14911502.
  9. Hayes, K.F. and Leckie, J.O. (1987) Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J. Colloid Interface Sci., 115, 564-572.
  10. Hayes, K.F., Roe, A.L., Brown, G.E. Jr., Hodgson, K.O., Leckie, J.O., and Parks, G. A. (1987) In situ X-ray absorption study of surface complexes at oxide/water interfaces: Selenium oxyanions on $\alpha$ -FeOOH. Science, 238, 783-786.
  11. James, R.O. and Healy, T.W. (1972) Adsorption of hydrolyzable metal ions at the oxide-water interface. J. Colloid Interface Sci., 40, 42-64.
  12. Karickhoff, S.W. and Morris, K.R. (1985) Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environ. Toxicol. Chern.,4, 469-479.
  13. Kinniburgh, D.G. and Jackson, M.L. (1981) Cation adsorption by hydrous metal oxides and clay.In: Anderson M. A., and Rubin, A. J. (eds.),Ann-Arbor Sci., Ann-Arbor, Michigan.
  14. Ko, Y.H. (1991) Sorption studies of Cd$^2+$on calcite: Kinetics and Reversibility. M.S. Thesis, State Univ. of New York at Stony Brook, New York, U.S.A.
  15. Lahann, R.W. and Siebert, R.M. (1982) A kinetic model for distribution coefficients and application to Mg-calcites. Geochim. Cosmochim. Acta, 46, 2229-2237.
  16. Lorens, R.B. (1981) Sr, Cd, Mn, and Co distribution coefficients on calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta, 45, 553-56l.
  17. McBride, M.B. (1979) Chemisorption and precipitation of Mn$^2+$ at CaCO$_3$ surfaces. Am. J. Soil. Science Soc., 43, 693-698.
  18. McBride, M.B. (1980) Chemisorption of Cd$^2+$on calcite surfaces. Am. J. Soil Science Soc., 44,26-28.
  19. Morse, J.W., Mucci, A., Walter, L.M., and Kaminsky, M. S. (1979) Magnesium interaction with the surface of calcite in water. Science,205, 904-905.
  20. Morse, lW. (1986) The surface chemistry of calcium carbonate minerals in natural waters: An overview. Mar. Chern., 20, 91-112.
  21. Papadopoulos, P. and Rowell, D.L. (1988) The interaction of cadmium with calcium carbonate surfaces. J. Soil Science, 39, 23-36.
  22. Parks, G.A. (1990) Surface energy and adsorption at mineral-water interfaces: An introduction. (In: Hochella M.F. Jr and White, A. F. (eds.),Reviews in Mineralogy, Vol. 23, Mineral-Water Interface Geochemistry.) Mineral. Soc. Am. 23,133-169.
  23. Sposito, G. (1986) Distinguishing adsorption from surface precipitation. Geochemical Processes of Mineral Surfaces, In: Davis, J. A., and Hayes, K. F. (eds.j), ACS Symposium, Series 323,217-228.
  24. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry. John Wiley and Sons, New York.
  25. Watson, E.B. (1996) Surface enrichment and trace-elements uptake during crystal growth. Geoehim. Cosmochim. Acta, 60, 5013-5020.
  26. Zachara, J.M., Kittrick, J.A., and Harsh, J.B. (1988) The mechanism of Zn$^2+$ adsorption on calcite. Geochim. Cosmochim. Acta, 52, 2281229l.
  27. Zachara, lM., Kittrick, lA., Dake, L.S., and Harsh, J.B. (1989) Solubility and surface spectroscopy of zinc precipitates on calcite. Geochim. Cosmochim. Acta, 53, 9-19.
  28. Zachara, J.M., Cowan, C.E., and Resch, C.T. (1991) Sorption of divalent metals on calcite. Geochim, Cosmochim. Acta, 55, 1549-1562.