• Title/Summary/Keyword: Precipitate of surfactant complex

Search Result 4, Processing Time 0.016 seconds

A Study on the Optimization of Physical and Chemical Parameters for the Precipitate of Sodium Alkylsulfate with Cetylpyridinium Chloride

  • Oh, Sun-Wha;Moon, Sung-Doo;Lee, Don-Keun;Lee, Dong-Jae;Kang, Young-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.280-284
    • /
    • 2004
  • The optimum conditions for the most effective precipitate of surfactant complex of sodium alkylsulfate with cetylpyridinium chloride were studied in the aqueous solution. The parameters such as the alkyl chain length of anionic surfactants, molar ratio of two surfactants, temperature and the concentration of added NaCl in the aqueous solution were correlatively studied for the productivity of the precipitate formation. By the productivity, the optimum conditions to produce complex of anionic surfactant with cationic surfactant were the longer alkyl chain, equivalent molar ratio between anionic and cationic surfactants, 0 $^{\circ}C$ and 1.5 M NaCl.

Synergistic Surface Activities and Phase Behavior in Mixtures of a Diglyceryl Cationic Surfactant and a Conventional Anionic Surfactant (디글리세릴계 양이온계면활성제와 일반 음이온계면활성제 혼합물에서의 계면활성 상승효과와 상거동)

  • Choi, Jeong-Jin;Cho, Wan-Goo;Rang, Moon-Jeong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.799-805
    • /
    • 2008
  • In general, anionic and cationic surfactants are incompatible because their mixtures form insoluble complexes and precipitate in the water. There are, however, some equimolar complexes of anionic and cationic surfactant that are soluble and behave like regular surfactants, specifically like nonionic surfactants, thus named pseudo-nonionic surfactant complexes. Pseudo-nonionic complexes are more effective and efficient in surface activities than their ionic surfactant components as shown by their equilibrium and dynamic surface tensions. They pack at the interface more than their ionic components. When a novel cationic surfactant, diglyceryl dodecyl dimethyl ammonium chloride(DGDAC), having the polyhydroxyl group at the hydrophilic head group, was mixed with a conventional anionic surfactant (sodium dodecyl sulfate; SDS) at equimolar ratio, we found that the aqueous equimolar mixture showed strong positive synergism in which molecular interaction parameter ${\beta}^M$ was very low, -17.2. According to the studies of equilibrium phase behavior and microscopy, this mixed system could form homogenous solutions containing vesicles.

Application of Precipitate Flotation Technique to Separative Preconcentration and Determination of Arsenic in Water Samples (물시료 중 비소의 분리 정량을 위한 침전 부선기술의 응용)

  • Park Sang-Wan;Choi Hee-Seon;Kim Young-Man;Kim Young-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.389-396
    • /
    • 1991
  • The pre-concentration and determination of ultratrace arsenic in water samples was studied by the precipitate flotation technique. The arsenic in 1.0l of water sample, in which all suspended materials were filtered out, was coprecipitated together with La(OH)$_3$ precipitates at pH 8.5${\pm}$0.1. After the precipitate was made to be hydrophobic by adding mixed surfactant of 1 : 8 mole ratio of sodium oleate and sodium dodecyl sulfate, it was floated with the aid of tiny bubbles of nitrogen gas in a flotation cell. The floated precipitate was quantitatively collected on a micropore glass filter by the suction, dissolved with small volume of 1.0M sulfuric acid, and accurately diluted to 25.00ml with a de-ionized water. Total arsenic was spectrophotometrically determinated by forming silver diethyldithiocarbamate complex of arsine generated from arsenic in the concentrated solution. The calibration curve was linear up to 20ng/ml in the original solution. Analytical results showed that contents of arsenic in a campus wastewater and a river water were 8.2ng/ml and l.0ng/ml, respectively, and their recoveries were 93${\%}$ and 90${\%}$ in water samples which a given amount of arsenic was added into. From above result, it could be concluded that this method was applicable to the determination of arsenic in various kinds of water at low ng/ml levels.

  • PDF

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate(Ⅰ). Determination of Bismuth, Cadmium, Cobalt and Lead in Water Samples by Coprecipitation-Flotation with Cu-pyrrolidinedithiocarbamate (Ammonium Pyrrolidinedithiocarbamate에 의한 극미량 금속원소의 유기침전 부선에 관한 연구(제1보) Cu-pyrrolidinedithiocarbamate 공침부선에 의한 물시료중 비스무트, 카드뮴, 코발트 및 납의 정량)

  • Jung, Yong June;Choi, Jong Moon;Choi, Hee Seon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.724-732
    • /
    • 1996
  • The organic precipitate flotation using Cu(II)-pyrrolidinedithiocarbamate complex as a coprecipitant was studied for the preconcentration and determination of trace Cd, Pb, Bi and Co in several water samples. Experimental conditions such as pH of solution, amounts of Cu(II) and ammonium pyrrolidinedithiocarbamate(APDC), stirring time, the type and amount of surfactant, etc. were optimized for the effective flotation of analytes. After 3.0 mL of 1,000 ${\mu}g/mL$ Cu(II) solution was added to 1.00 L water sample, the pH of the solution was adjusted to 2.5 with HNO3 solution. Trace amounts of analytes were coprecipitated by adding 2.0% APDC solution. And the precipitates were flotated onto the surface of solution with the aid of nitrogen gas and sodium lauryl sulfate. The floats were collected from mother liquor, and filtered through the micropore glass filter by suction. The precipitates were dissolved with 4 mL conc. HNO3, and then diluted to 25.00 mL with deionized water. The analytes were determined by graphite furnace atomic absorption spectrophotometry. This flotation technique was applied to the analysis of some water samples, and the 90 to 120% of recoveries were obtained from the spiked samples, this procedure could be concluded to be simple and applicable for the trace element analysis in various kinds of water.

  • PDF