• Title/Summary/Keyword: Precast Concrete Panel

Search Result 125, Processing Time 0.02 seconds

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

Seismic behavior of post-tensioned precast reinforced concrete beam-to-column connections

  • Cheng, Chin-Tung
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.525-544
    • /
    • 2008
  • In this research, the self-centering effect in precast and prestressed reinforced concrete structures was investigated experimentally. The reinforced concrete beams and columns were precast and connected by post-tensioning tendons passing through the center of the beams as well as the panel zone of the connections. Three beam-to-interior-column connections were constructed to investigate parameters such as beam to column interfaces (steel on steel or plastic on plastic), energy dissipating devices (unbonded buckling restrained steel bars or steel angles) and the spacing of hoops in the panel zone. In addition to the self-centering effect, the shear strength in the panel zone of interior column connections was experimentally and theoretically evaluated, since the panel zone designed by current code provisions may not be conservative enough to resist the panel shear increased by the post-tensioning force.

Evaluation of Flexural Behavior of Lightweight Precast Panel with Ultra High Performance Concrete (초고성능 콘크리트를 적용한 경량 프리캐스트 패널의 휨 거동 평가)

  • Kim, Kyoung-Chul;Koh, Kyung-Taek;An, Gi-Hong;Son, Min-Su;Kim, Byung-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, flexural tests of precast concrete panels according to the thickness of cross-sectional and the with or not of reinforcement were carried out in order to develop and assess of a lightweight precast concrete panel using ultra high performance concrete. For the test, four panels were fabricated, and consisted of one normal concrete panel and three ultra high performance concrete panels. As a test result, it was found that the plain precast panel using ultra high performance concrete had a lower flexural performance than the reinforced normal concrete panel, regardless of the cross-sectional size. The flexural performance of the hollow-sectional precast panel applying ultra high performance concrete, is improved by 150% compared to that of the reinforced normal concrete panel. That is, through additional performance verification and optimization of the cross-sectional design of the panel, the ultra high performance concrete precast panel can be made lighter. Also, the practical use of lightweight precast panels with ultra high performance concrete can be available through evaluation on shear, joint connection and anchoring, etc.

An Experiment Study on the Structural Behavior of Full-scale Subassemblage Subjected to Monotonic Loads in Precast Concrete Panel Structres (일방향 단순 횡하중을 받는 P.C판 조립식구조 실물 Subassemblage의 구조거동에 대한 실험적 연구)

  • Youn, Jae-Jin;Chung, Lan;Lee, Soo-Gon
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.133-145
    • /
    • 1991
  • The essential difference between precast concrete structures and in situ concrete structures lies in the precast concrete panel structres, it is necessary to understand the bahavior of joints and their implications regarding overall structural behavior. Form such a point of view, this experimental study observes the components and joint behavior under the stress states expected of precast concrete panel structures subjected to lateral loads. 2 full-scale subassemblages were fabricated and tested. The test results show that the characteristics of horizontsl joints and wall coupling beams mainly govern the whole hahavior of P.C. structres.

Quasi-Static Test of Precast Concrete Large Panel Subassemblage (P.C 대형판넬 부분구조물의 Quasi-Static 실험연구)

  • Choi, Jeong-Su;Lee, Han-Seon;Kim, U;Hong, Gap-Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • Large panel building systems are composed of vertical wall panels which support horizontal roof and floor panels to form a box like structure. The simplecity of the connections, which makes precast concrete economically viable, causes a lack of continuity in stiffness, strength and ductility. This precast concrete large panel systems typically have weak connection regions. Three types of 2-story full-scale precast concrete subassemblages were tested under reversed cyclic loading. The seismic resistance capacity and failure mode of each system are compared in connection with the characteristics of joint connection details.

  • PDF

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Pull-out Capacity of Cast-in-place Anchor for Construction of Precast Concrete Segment Arch (프리캐스트 콘크리트 패널 분절 아치 시공을 위한 선설치 앵커의 인발 강도 평가)

  • Ahn, Jin-Hee;Yim, Hong Jae;Bang, Jin Soo;Jeon, Seok Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.94-102
    • /
    • 2020
  • Precast concrete segment arch system has an economic and construct ability that combined with advantage of precast concrete and arch behavior. A precast concrete segment arch system with outrigger is consisted of segmented precast panels, a steel outrigger rib, and V-strip to connect precast panels with a steel outrigger rib and cast-in-place anchors in precast panels to connect V-strip should have sufficient pull-out capacity to form its arch shape by site lifting for assembled precast panels and outriggers. However, it is difficult to secure its embedment depth due to the relatively shallow thickness of precast panel. It can be also occurred that flexure deformation of precast panels caused by its pull-out behaviors. In this study, pull-out capacity of cast-in-place anchor was examined for construction of precast concrete segment arch system with outriggers. Therefore, a total of 24 precast panel specimens were fabricated to examine pull-out capacities of cast-in-place anchor in precast panels, and installation depth of anchors, diameter of anchors and wire mesh effects for the precast panel were examined. From this pull-out tests, its pull-out capacities and failure modes were evaluated and the type of the cast-in-place anchor applicable to the precast concrete segment panel arch system with outriggers was determined from comparison of the design specification values.

Behavior Monitoring of Precast Concrete Panels in Lifting (프리캐스트 패널의 양중에 따른 거동 계측 연구)

  • Yang, Sung Chul;Kim, Seong Min;Han, Seung Hwan;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.51-59
    • /
    • 2012
  • Through this research safety factors were analyzed for concrete precast panels in road pavement which happens in lifting, moving, and installing. Two half size of full-scale precast concrete panels were made while one full-scale precast concrete panel was made. A series of strain gages for concrete and steel were installed and measured in lifting and transporting. Measurement results indicate that in case of 60 degree of lifting, small scale panel in dynamic motion produces about 3.54 times of strain compared to the static condition. However strain measurement of full-scale concrete panel in lifting and transportation does not yield any big difference compared to the small scale panels in the static condition. From this experimental results safety of the full-scale concrete panel was attained for the lifting system adopted in this research.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Son, Guk-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.