• 제목/요약/키워드: Pre-trained Model

검색결과 286건 처리시간 0.02초

딥러닝 기반 사전학습 언어모델에 대한 이해와 현황 (A Survey on Deep Learning-based Pre-Trained Language Models)

  • 박상언
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.11-29
    • /
    • 2022
  • 사전학습 언어모델은 자연어 처리 작업에서 가장 중요하고 많이 활용되는 도구로, 대량의 말뭉치를 대상으로 사전학습이 되어있어 적은 수의 데이터를 이용한 미세조정학습으로도 높은 성능을 기대할 수 있으며, 사전학습된 토크나이저과 딥러닝 모형 등 구현에 필요한 요소들이 함께 배포되기 때문에 자연어 처리 작업에 소요되는 비용과 기간을 크게 단축시켰다. 트랜스포머 변형 모형은 이와 같은 장점을 제공하는 사전학습 언어모델 중에서 최근 가장 많이 사용되고 있는 모형으로, 번역을 비롯하여 문서 요약, 챗봇과 같은 질의 응답, 자연스러운 문장의 생성 및 문서의 분류 등 다양한 자연어 처리 작업에 활용되고 있으며 컴퓨터 비전 분야와 오디오 관련 분야 등 다른 분야에서도 활발하게 활용되고 있다. 본 논문은 연구자들이 보다 쉽게 사전학습 언어모델에 대해 이해하고 자연어 처리 작업에 활용할 수 있도록 하기 위해, 언어모델과 사전학습 언어모델의 정의로부터 시작하여 사전학습 언어모델의 발전과정과 다양한 트랜스포머 변형 모형에 대해 조사하고 정리하였다.

사전 학습된 한국어 BERT의 전이학습을 통한 한국어 기계독해 성능개선에 관한 연구 (A Study of Fine Tuning Pre-Trained Korean BERT for Question Answering Performance Development)

  • 이치훈;이연지;이동희
    • 한국IT서비스학회지
    • /
    • 제19권5호
    • /
    • pp.83-91
    • /
    • 2020
  • Language Models such as BERT has been an important factor of deep learning-based natural language processing. Pre-training the transformer-based language models would be computationally expensive since they are consist of deep and broad architecture and layers using an attention mechanism and also require huge amount of data to train. Hence, it became mandatory to do fine-tuning large pre-trained language models which are trained by Google or some companies can afford the resources and cost. There are various techniques for fine tuning the language models and this paper examines three techniques, which are data augmentation, tuning the hyper paramters and partly re-constructing the neural networks. For data augmentation, we use no-answer augmentation and back-translation method. Also, some useful combinations of hyper parameters are observed by conducting a number of experiments. Finally, we have GRU, LSTM networks to boost our model performance with adding those networks to BERT pre-trained model. We do fine-tuning the pre-trained korean-based language model through the methods mentioned above and push the F1 score from baseline up to 89.66. Moreover, some failure attempts give us important lessons and tell us the further direction in a good way.

Medical Image Classification using Pre-trained Convolutional Neural Networks and Support Vector Machine

  • Ahmed, Ali
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.1-6
    • /
    • 2021
  • Recently, pre-trained convolutional neural network CNNs have been widely used and applied for medical image classification. These models can utilised in three different ways, for feature extraction, to use the architecture of the pre-trained model and to train some layers while freezing others. In this study, the ResNet18 pre-trained CNNs model is used for feature extraction, followed by the support vector machine for multiple classes to classify medical images from multi-classes, which is used as the main classifier. Our proposed classification method was implemented on Kvasir and PH2 medical image datasets. The overall accuracy was 93.38% and 91.67% for Kvasir and PH2 datasets, respectively. The classification results and performance of our proposed method outperformed some of the related similar methods in this area of study.

KorPatELECTRA : A Pre-trained Language Model for Korean Patent Literature to improve performance in the field of natural language processing(Korean Patent ELECTRA)

  • Jang, Ji-Mo;Min, Jae-Ok;Noh, Han-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.15-23
    • /
    • 2022
  • 특허 분야에서 자연어처리(Natural Language Processing) 태스크는 특허문헌의 언어적 특이성으로 문제 해결의 난이도가 높은 과제임에 따라 한국 특허문헌에 최적화된 언어모델의 연구가 시급한 실정이다. 최근 자연어처리 분야에서는 특정 도메인에 특화되게 사전 학습(Pre-trained)한 언어모델을 구축하여 관련 분야의 다양한 태스크에서 성능을 향상시키려는 시도가 지속적으로 이루어지고 있다. 그 중, ELECTRA는 Google이 BERT 이후에 RTD(Replaced Token Detection)라는 새로운 방식을 제안하며 학습 효율성을 높인 사전학습 언어모델이다. 본 연구에서는 대량의 한국 특허문헌 데이터를 사전 학습한 KorPatELECTRA를 제안한다. 또한, 특허 문헌의 특성에 맞게 학습 코퍼스를 정제하고 특허 사용자 사전 및 전용 토크나이저를 적용하여 최적화된 사전 학습을 진행하였다. KorPatELECTRA의 성능 확인을 위해 실제 특허데이터를 활용한 NER(Named Entity Recognition), MRC(Machine Reading Comprehension), 특허문서 분류 태스크를 실험하였고 비교 대상인 범용 모델에 비해 3가지 태스크 모두에서 가장 우수한 성능을 확인하였다.

A Protein-Protein Interaction Extraction Approach Based on Large Pre-trained Language Model and Adversarial Training

  • Tang, Zhan;Guo, Xuchao;Bai, Zhao;Diao, Lei;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.771-791
    • /
    • 2022
  • Protein-protein interaction (PPI) extraction from original text is important for revealing the molecular mechanism of biological processes. With the rapid growth of biomedical literature, manually extracting PPI has become more time-consuming and laborious. Therefore, the automatic PPI extraction from the raw literature through natural language processing technology has attracted the attention of the majority of researchers. We propose a PPI extraction model based on the large pre-trained language model and adversarial training. It enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, which are built on large-scale domain corpora, and adversarial perturbations are applied to the embedding layer to improve the robustness of the model. Experimental results showed that the proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous method. It also achieved comparable performance on three corpora with small sample sizes, namely, HPRD50, IEPA, and LLL.

Robust Sentiment Classification of Metaverse Services Using a Pre-trained Language Model with Soft Voting

  • Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2334-2347
    • /
    • 2023
  • Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.

도메인 특수성이 도메인 특화 사전학습 언어모델의 성능에 미치는 영향 (The Effect of Domain Specificity on the Performance of Domain-Specific Pre-Trained Language Models)

  • 한민아;김윤하;김남규
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.251-273
    • /
    • 2022
  • 최근 텍스트 분석을 딥러닝에 적용한 연구가 꾸준히 이어지고 있으며, 특히 대용량의 데이터 셋을 학습한 사전학습 언어모델을 통해 단어의 의미를 파악하여 요약, 감정 분류 등의 태스크를 수행하려는 연구가 활발히 이루어지고 있다. 하지만 기존 사전학습 언어모델이 특정 도메인을 잘 이해하지 못한다는 한계를 나타냄에 따라, 최근 특정 도메인에 특화된 언어모델을 만들고자 하는 방향으로 연구의 흐름이 옮겨가고 있는 추세이다. 도메인 특화 추가 사전학습 언어모델은 특정 도메인의 지식을 모델이 더 잘 이해할 수 있게 하여, 해당 분야의 다양한 태스크에서 성능 향상을 가져왔다. 하지만 도메인 특화 추가 사전학습은 해당 도메인의 말뭉치 데이터를 확보하기 위해 많은 비용이 소요될 뿐 아니라, 고성능 컴퓨팅 자원과 개발 인력 등의 측면에서도 많은 비용과 시간이 투입되어야 한다는 부담이 있다. 아울러 일부 도메인에서 추가 사전학습 후의 성능 개선이 미미하다는 사례가 보고됨에 따라, 성능 개선 여부가 확실하지 않은 상태에서 도메인 특화 추가 사전학습 모델의 개발에 막대한 비용을 투입해야 하는지 여부에 대해 판단이 어려운 상황이다. 이러한 상황에도 불구하고 최근 각 도메인의 성능 개선 자체에 초점을 둔 추가 사전학습 연구는 다양한 분야에서 수행되고 있지만, 추가 사전학습을 통한 성능 개선에 영향을 미치는 도메인의 특성을 규명하기 위한 연구는 거의 이루어지지 않고 있다. 본 논문에서는 이러한 한계를 극복하기 위해, 실제로 추가 사전학습을 수행하기 전에 추가 사전학습을 통한 해당 도메인의 성능 개선 정도를 선제적으로 확인할 수 있는 방안을 제시한다. 구체적으로 3개의 도메인을 분석 대상 도메인으로 선정한 후, 각 도메인에서의 추가 사전학습을 통한 분류 정확도 상승 폭을 측정한다. 또한 각 도메인에서 사용된 주요 단어들의 정규화된 빈도를 기반으로 해당 도메인의 특수성을 측정하는 지표를 새롭게 개발하여 제시한다. 사전학습 언어모델과 3개 도메인의 도메인 특화 사전학습 언어모델을 사용한 분류 태스크 실험을 통해, 도메인 특수성 지표가 높을수록 추가 사전학습을 통한 성능 개선 폭이 높음을 확인하였다.

Integration of WFST Language Model in Pre-trained Korean E2E ASR Model

  • Junseok Oh;Eunsoo Cho;Ji-Hwan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1692-1705
    • /
    • 2024
  • In this paper, we present a method that integrates a Grammar Transducer as an external language model to enhance the accuracy of the pre-trained Korean End-to-end (E2E) Automatic Speech Recognition (ASR) model. The E2E ASR model utilizes the Connectionist Temporal Classification (CTC) loss function to derive hypothesis sentences from input audio. However, this method reveals a limitation inherent in the CTC approach, as it fails to capture language information from transcript data directly. To overcome this limitation, we propose a fusion approach that combines a clause-level n-gram language model, transformed into a Weighted Finite-State Transducer (WFST), with the E2E ASR model. This approach enhances the model's accuracy and allows for domain adaptation using just additional text data, avoiding the need for further intensive training of the extensive pre-trained ASR model. This is particularly advantageous for Korean, characterized as a low-resource language, which confronts a significant challenge due to limited resources of speech data and available ASR models. Initially, we validate the efficacy of training the n-gram model at the clause-level by contrasting its inference accuracy with that of the E2E ASR model when merged with language models trained on smaller lexical units. We then demonstrate that our approach achieves enhanced domain adaptation accuracy compared to Shallow Fusion, a previously devised method for merging an external language model with an E2E ASR model without necessitating additional training.

멀티모달 딥 러닝 기반 이상 상황 탐지 방법론 (Anomaly Detection Methodology Based on Multimodal Deep Learning)

  • 이동훈;김남규
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.101-125
    • /
    • 2022
  • 최근 컴퓨팅 기술의 발전과 클라우드 환경의 개선에 따라 딥 러닝 기술이 발전하게 되었으며, 다양한 분야에 딥 러닝을 적용하려는 시도가 많아지고 있다. 대표적인 예로 정상적인 데이터에서 벗어나는 값이나 패턴을 식별하는 기법인 이상 탐지가 있으며, 이상 탐지의 대표적 유형인 점 이상, 집단적 이상, 맥락적 이중 특히 전반적인 상황을 파악해야 하는 맥락적 이상을 탐지하는 것은 매우 어려운 것으로 알려져 있다. 일반적으로 이미지 데이터의 이상 상황 탐지는 대용량 데이터로 학습된 사전학습 모델을 사용하여 이루어진다. 하지만 이러한 사전학습 모델은 이미지의 객체 클래스 분류에 초점을 두어 생성되었기 때문에, 다양한 객체들이 만들어내는 복잡한 상황을 탐지해야 하는 이상 상황 탐지에 그대로 적용되기에는 한계가 있다. 이에 본 연구에서는 객체 클래스 분류를 학습한 사전학습 모델을 기반으로 이미지 캡셔닝 학습을 추가적으로 수행하여, 객체 파악뿐만 아니라 객체들이 만들어내는 상황까지 이해해야 하는 이상 상황 탐지에 적절한 2 단계 사전학습 모델 구축 방법론을 제안한다. 구체적으로 제안 방법론은 ImageNet 데이터로 클래스 분류를 학습한 사전학습 모델을 이미지 캡셔닝 모델에 전이하고, 이미지가 나타내는 상황을 설명한 캡션을 입력 데이터로 사용하여 학습을 진행한다. 이후 이미지와 캡션을 통해 상황 특질을 학습한 가중치를 추출하고 이에 대한 미세 조정을 수행하여 이상 상황 탐지 모델을 생성한다. 제안 방법론의 성능을 평가하기 위해 직접 구축한 데이터 셋인 상황 이미지 400장에 대해 이상 탐지 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 단순 사전학습 모델에 비해 이상 상황 탐지 정확도와 F1-score 측면에서 우수한 성능을 나타냄을 확인하였다.

Self-Supervised Document Representation Method

  • Yun, Yeoil;Kim, Namgyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.187-197
    • /
    • 2020
  • 최근 신경망 기반의 학습 알고리즘인 딥 러닝 기술의 발전으로 인해 텍스트의 문맥을 고려한 문서 임베딩 모델이 다양하게 고안되었으며, 특히 대량의 텍스트 데이터를 사용하여 학습을 수행한 사전 학습 언어 모델을 사용하여 분석 문서의 벡터를 추론하는 방식의 임베딩이 활발하게 연구되고 있다. 하지만 기존의 사전 학습 언어 모델을 사용하여 새로운 텍스트에 대한 임베딩을 수행할 경우 해당 텍스트가 가진 고유한 정보를 충분히 활용하지 못한다는 한계를 가지며, 이는 특히 텍스트가 가진 토큰의 수에 큰 영향을 받는 것으로 알려져 있다. 이에 본 연구에서는 다수의 토큰을 포함한 장문 텍스트의 정보를 최대한 활용하여 해당 텍스트의 벡터를 도출할 수 있는 자기 지도 학습 기반의 사전 학습 언어 모델 미세 조정 방법을 제안한다. 또한, 제안 방법론을 실제 뉴스 기사에 적용하여 문서 벡터를 도출하고 이를 활용하여 뉴스의 카테고리 분류 실험을 수행하는 외부적인 임베딩 평가를 수행함으로써, 제안 방법론과 기존 문서 임베딩 모델과의 성능을 평가하였다. 그 결과 제안 방법론을 통해 도출된 벡터가 텍스트의 고유 정보를 충분히 활용함으로써, 문서의 특성을 더욱 정확하게 표현할 수 있음을 확인하였다.