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Abstract 

 
Protein-protein interaction (PPI) extraction from original text is important for revealing the 
molecular mechanism of biological processes. With the rapid growth of biomedical literature, 
manually extracting PPI has become more time-consuming and laborious. Therefore, the 
automatic PPI extraction from the raw literature through natural language processing 
technology has attracted the attention of the majority of researchers. We propose a PPI 
extraction model based on the large pre-trained language model and adversarial training. It 
enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, 
which are built on large-scale domain corpora, and adversarial perturbations are applied to the 
embedding layer to improve the robustness of the model. Experimental results showed that the 
proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with 
large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous 
method. It also achieved comparable performance on three corpora with small sample sizes, 
namely, HPRD50, IEPA, and LLL. 
 
 
Keywords: adversarial training, information extraction, natural language processing, pre-
trained language model, protein-protein interaction 
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1. Introduction 

Protein-protein interaction (PPI) is very important for understanding the molecular 
mechanism of biological processes [1]. The study of PPI has important reference significance 
for biomedical work, such as the study of drug targets [2] and analysis of signal proteins [3]. 
Abundant PPI information exists in biomedical literature in an unstructured form. Manual PPI 
extraction is costly and requires long time given the large number of published studies on PPI. 
Therefore, automatic PPI extraction from biomedical literature has become an important 
research field, which has attracted the attention of the majority of researchers. 

In the previous work, extracting PPI based on co-occurrence and pattern matching is very 
popular [4-6]. However, in recent years, machine learning method with better performance has 
become the mainstream. Machine learning method constructs feature set based on feature 
engineering and kernel method, and then classified by support vector machine or other 
classifiers. The commonly used kernel functions are based on synchronous parse trees [7] and 
dependency parse trees [8]. Distributed smoothed tree kernel (DSTK) method proposed by [7] 
has achieved significant improvement compared with other kernel methods and machine 
learning methods. Some researchers also began to apply deep learning methods to PPI 
extraction and achieved satisfying performance given the wide application of deep learning 
technology in natural language processing. The first attempt to introduce deep learning into 
the field of PPI relation extraction, used feature engineering to construct feature sets and deep 
neural network (DNN) for modeling [9]. Although the first attempt to introduce deep learning 
technology to the PPI extraction problem used a deep learning model, it is still essentially a 
feature engineering-based method, which can be improved. Methods based on convolution 
neural network (CNN) further improve the accuracy of PPI extraction. They usually use word 
embedding as input features [10] and combine withshortest dependency path (SDP), lexical 
features, and semantic features. [11- 13]. The use of residual connection can increase the 
feature extraction ability of CNN, with the word embedding as input to obtain better results 
than machine learning methods. The experimental results show that deeper structures can 
directly learn sufficient features from the text itself [14]. Recurrent neural network (RNN)-
based methods are also widely used [15-17]. The simple large capacity bidirectional long short 
term memory (LSTM) model achieves satisfactory results on large sample size datasets [15]. 
In addition, the transformer-based methods emphasize the integrity of global context 
representation, such as Bert [18] and BioBERT [19]. [20] added lexical features to the 
transformer structure and proposed an LBERT model based on lexical patterns to represent 
sentences. The accuracy of the LBERT model has been greatly improved compared with 
BioBERT. However, its performance is still far behind that of LSTM and CNN-based methods 
on large sample size datasets. Its fine-tuning methods from the official simple implementation 
are inapplicable to PPI extraction; thus the advantages of the large pre-trained language model 
cannot be fully expressed. 

In general, the PPI extraction approach based on deep learning can be divided into three 
parts, namely, feature representation component, feature extraction component, and classifier 
component, as shown in Fig. 1. 
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Fig. 1.  Illustration of the PPI extraction approach based on deep learning 

 
The feature representation component is used to convert text data into numerical data for 

subsequent parts of the model, which has a crucial impact on the performance of the model. 
Common feature representation components include word embedding, lexical features, 
semantic features, and SDP. The feature extraction component is used to model text, further 
abstract and extract text features, and generate vectors for final classification. Common feature 
extraction components include DNN, CNN, RNN, and transformer. In addition to feature 
extraction, a transformer can be used for feature representation. Relevant studies show that 
transformer structure is superior to LSTM, CNN, and other structures [21] However, in PPI 
extraction, the existing transformer-based model has not achieved significantly better 
performance than LSTM, CNN, and other traditional structures. The classifier is used to 
generate the final predicted label. A linear transformation layer and a sigmoid or softmax 
function are added to the top of the model to generate conditional probabilities in the category 
space. For two classification problems, using the sigmoid and the softmax function is roughly 
equivalent. 

Moreover, to increase the generalization of the PPI extraction model, the protein named 
entity in the text is usually replaced with the common entity name, as follows: “PROTEIN1,” 
“PROTEIN2” or “PROTEIN,” where “PROTEIN1” and “PROTEIN2” are the target pairs, 
“PROTEIN2” stands for other protein named entities. For example, the sentence “thymocyte 
activation induces the association of phosphatidylinositol 3-kinase and pp120 with CD5.” 
contains three protein named entities,namely, “phosphatidylinositol 3-kinase,” “pp120,” and 
“CD5.,” When considering the interaction between “phosphatidylinositol 3-kinase” and 
“pp120,” the sentence is rewritten as follows: “thymocyte activation induces the association 
of PROTEIN1 and PROTEIN2 with PROTEIN.,” When we pay attention to the interaction 
between “pp120” and “CD5,” it is rewritten as “thymocyte activation induces the association 
of PROTEIN and PROTEIN1 with PROTEIN2.” It leads to many samples with small 
differences in the text data, seriously affecting the robustness of the PPI extraction model. 
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To address these problems, based on the BERT architecture, the adversarial training 
method is proposed, and the ADVBERT model and its two variant structures are proposed. In 
the training process, the token embedding input is perturbed to improve the quality of the 
learned word embedding and the overfitting problem. The main contributions of this study are 
as follows: 

(1) The limitation of the previous work is that the semantic and syntactic information 
captured is insufficient. This work fully uses the semantic and syntactic information of the 
large pre-trained language model, combined with the pre-training weights obtained from a lot 
of text in the field. In addition, the BERT architecture based on the small neural network is 
improved, and a new state-of-the-art method on PPI extraction is achieved.  

(2) The previous work should be improved in terms of robustness. This work introduces 
adversarial training into the PPI extraction approach and proposes an adversarial training 
method for PPI-related texts. The PPI extraction model obtains higher robustness in the 
presence of many small difference samples by applying the adversarial perturbations to the 
weight matrix of token embedding. 

2. Related work 

2.1 Pre-trained language model 
In the field of natural language processing, a deep network structure is trained using a large-
scale unlabeled text corpus to obtain a set of model parameters. This deep network structure 
is usually called the pre-trained model. The pre-trained model can use general information in 
the large-scale unlabeled text to improve the effectiveness of subsequent specific tasks and 
reduce the requirement for the amount of labeled data; it can also handle some scenes, where 
obtaining a large amount of labeled data is difficult [22]. 

Most early pre-trained models used static techniques, such as Word2Vec [23] and GloVe 
[24]. These methods can learn shallow representations of text, which can improve the 
downstream tasks. However, static pre-training technology cannot solve the problem of 
polysemous words that often appear in natural language. In response to this problem, 
researchers began to apply dynamic pre-training technology to pre-trained language models. 
ELMo [25] uses two-layer two-way LSTM with residuals to train the language model, captures 
contextual information, and solves the problem of ambiguity. [26] proposed a multistage 
migration method and fine-tuning the pre-training model skills to provide important guidance 
for the subsequent development of pre-training technology. Transformer [21] usually has 
better results than LSTM, and has achieved effective results on tasks such as machine 
translation; it has been applied to pre-trained language models. The generative pre-training 
(GPT) model [27] stacks 12 transformer substructures, which have sufficient characterization 
capabilities and significantly improve the effect of downstream tasks. The GPT model is still 
essentially a one-way language model, and its ability to model semantic information is limited. 
To solve this problem, the BERT model [18] achieved the effect of a two-way language model 
by randomly covering part of the words in the input text sequence during pre-training. In 
addition, [28] proposed a model based on federated learning. The emergence of the BERT 
model has greatly promoted the development of the field of natural language processing and 
reached a new state-of-the-art in several natural language processing tasks. However,  the 
BERT pre-trained weights trained on the general corpus cannot achieve satisfactory results in 
some cases due to the more complex textual sentence patterns in the biomedical field related 
to PPI and more professional terms. BioBERT [19] studied how to apply the pre-training 
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language model BERT to the field of biomedicine. Through the almost identical architecture 
on the task, after pre-training on the biomedical corpus, BioBERT is used in many biomedical 
text mining tasks. It is much better than BERT and the previous SoTA models. However, [20] 
applied BioBERT’s official code to PPI relation extraction and failed to achieve good results; 
the potential of BioBER’s pre-training weights should be further developed. 

2.2 Adversarial training methods 
Adversarial training was first applied in the field of computer vision, and adversarial samples 
generated based on adversarial disturbances were added to the training process to solve the 
security problem of deep learning models. In recent years, with the development of deep 
learning technology in the field of natural language processing, adversarial training based on 
fighting perturbations has also been used in the field of natural language processing. 

[29] found that after adding small perturbations that are invisible to the naked eye, the deep 
learning model provides false predictions with high confidence. Thus, the adversarial sample 
attracts the attention of the majority of researchers. [30] believed that this impact is caused by 
the linear behavior of deep neural networks in high dimensions given that small perturbations 
on the input may greatly affect the deep learning model. In addition, an adversarial objective 
function based on fast gradient sign method (FGSM), which enables adversarial training to be 
carried out at the same time as model training, was proposed. Experiments have shown that 
this regulation method is effective and can improve the robustness of deep learning models to 
small perturbations. [31] applied adversarial training to text problems, based on FGSM, 
removed the sign function, used the L2 norm to scale the gradient, and proposed the fast 
gradient method (FGM). Different from image data, text data are mostly in discrete form, and 
directly adding adversarial perturbations to the raw data is impossible. Therefore, FGM adds 
small perturbations to the embedding layer. Although the embedding layer with disturbance 
cannot correspond to the actual text input, this method can still effectively improve the 
performance of the model. [32] analyzed the adversarial training and summarized it as a 
minimum–maximization problem: the disturbance that maximizes the loss of the original 
model is found,as well as the most robust parameters of the model when the data error rate is 
the largest. 

To the best of our knowledge, use of adversarial training to improve the effect of PPI 
extraction has not been explored. Many samples with small differences are formed because 
the protein named entity is replaced with the general entity name in the PPI extraction research, 
thereby affecting the robustness of the PPI model. Adversarial training can improve this 
limitation to a certain extent. 

3. Method 
The basic architecture of the adversarial bidirectional encoder representations from 
transformers (ADVBERT) model includes input embeddings, BERT architecture, and 
classifier, as shown in Fig. 2. 
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Fig. 2. Basic architecture of the ADVBERT model 

3.1 Input embeddings 

3.1.1 Tokenization 
This work uses wordpiece [33] for word segmentation to reduce the size of the vocabulary. 
The definition of the word is separated from the tense voice by breaking the word into smaller 
units. This method can obtain streamlined and richer vocabulary. After the word segmentation, 
a special token [CLS] for classification is added to the beginning of the sequence, and a special 
token [SEP] for identifying the end of a sentence is added to the end to satisfy the requirements 
of using pre-trained weights. For example, the word sequence of “Levels of PROTEIN1 were 
slightly increased following PROTEIN2 treatment” after tokenization is as follows: “[CLS],” 
“Level,” “##s,” “of,” “PR,” “##OT,” “##EI,” “##N,” “##1,” “were,” “slightly,” 
“increased,” “following,” “PR,” “##OT,” “##EI,” “##N,” “##2,” “treatment,”and “[SEP].” 
The word sequence is converted into the corresponding integer id sequence as the input of the 
token embeddings.  

3.1.2 Input embeddings 
Segment embeddings are used to represent the sentence. For PPI extraction, only one segment 
is required; it is uniformly defined as 𝒔𝒔0. Position embeddings are used to encode position 
information. This work uses sine and cosine functions to construct position embeddings. The 
length of the input sequence is 𝑛𝑛, 𝑖𝑖 ∈ [0,𝑛𝑛) represent the i-th position in the sequence, and the 
embedding layer dimension is 𝑑𝑑𝑒𝑒.Then, 𝒔𝒔0 ∈ 𝑅𝑅𝑑𝑑𝑒𝑒, 𝒕𝒕𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑𝑒𝑒, and the position embeddings can 
be computed as follows: 

𝒑𝒑𝑖𝑖
(2𝑘𝑘) = sin�𝑖𝑖 100002𝑘𝑘 𝑑𝑑𝑒𝑒⁄⁄ �     (1) 
𝒑𝒑𝑖𝑖

(2𝑘𝑘+1) = cos�𝑖𝑖 100002𝑘𝑘 𝑑𝑑𝑒𝑒⁄⁄ �    (2) 
where 𝑘𝑘 = 𝑑𝑑𝑒𝑒/2, 𝒑𝒑𝑖𝑖

(2𝑘𝑘) represents the value of 𝒑𝒑𝑖𝑖 in the 2𝑘𝑘 dimension. 
Token embeddings is used to represent word embedding vectors. Adversarial perturbations 

are applied into token embeddings to increase the robustness and effectively regulate the 
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model. The FGM method directly adds perturbations to the embeddings [31], but this method 
requires disassembly and reconstruction of the model; it is diffcult to implement. Perturbing 
the embedding parameter matrix can also play a regularizing role because the output of 
embeddings is calculated from the embedding parameter matrix. Adversarial perturbations are 
added to the parameter matrix of token embeddings. Perturbation values are calculated by the 
gradient of the parameter matrix of token embeddings, and the L2 norm of the parameter 
matrix and an adjustable adversarial coefficient are used to scale the perturbation values. The 
parameter matrix of token embeddings is set to be 𝑾𝑾𝑇𝑇, as follows: 

𝑹𝑹𝑎𝑎𝑎𝑎𝑎𝑎 = [𝒓𝒓0,𝒓𝒓1,⋯𝒓𝒓𝑛𝑛−1] = 𝛼𝛼
∇𝑾𝑾𝑇𝑇𝐿𝐿(𝜽𝜽,𝒙𝒙,𝑦𝑦)

�∇𝑾𝑾𝑇𝑇𝐿𝐿(𝜽𝜽,𝒙𝒙,𝑦𝑦)�
2
   (3) 

where 𝛼𝛼 is the adversarial coefficient, 𝐿𝐿 is the loss function, 𝜽𝜽 is the model parameter, and 𝒙𝒙,𝑦𝑦 
are the input and output of the model, respectively. During training, 𝑾𝑾𝑇𝑇 = 𝑾𝑾𝑇𝑇 + 𝑹𝑹𝑎𝑎𝑎𝑎𝑎𝑎, and 
the perturbations are removed after parameter update, 𝑾𝑾𝑇𝑇 = 𝑾𝑾𝑇𝑇 − 𝑹𝑹𝑎𝑎𝑎𝑎𝑎𝑎 . This type of 
perturbation is different from random noise. The randomly generated noiseunnecessarily 
increases the gradient, but the perturbations generated in this approach always increase the 
gradient. Thus, the regularization effect is stronger. 

The output of the entire input embeddings 𝑬𝑬 is the sum of the three embeddings obtained 
as follows: 

𝒆𝒆𝑖𝑖 = 𝒔𝒔0 + 𝒕𝒕𝑖𝑖 + 𝒑𝒑𝑖𝑖     (4) 
𝑬𝑬 = [𝒆𝒆0,𝒆𝒆1,⋯𝒆𝒆𝑛𝑛−1] ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑𝑒𝑒    (5) 

3.2 BERT Architecture 

3.2.1 Transformer blocks 
Attention mechanism has not only been widely used in the field of computer vision [34-37], 
but also in the field of natural language processing. Attention-based BERT architecture is 
composed of N transformer blocks. Transformer blocks mainly include two parts, namely, 
Multi-Head attention and Feed Forward. The attention calculation method is Scaled Dot-
Product Attention [18], as follows: 

𝐴𝐴𝑇𝑇𝑇𝑇(𝑸𝑸,𝑲𝑲,𝑽𝑽) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑸𝑸𝑲𝑲
𝑇𝑇

√𝑑𝑑𝑘𝑘
�𝑽𝑽   (6) 

where 𝑑𝑑𝑘𝑘 is the dimension of 𝑲𝑲. 
Multi-Head attention allows the model to focus on the letters of different representation 

subspaces from different positions. The calculation method of a single attention head adopts 
self-attention calculation. 𝑸𝑸, 𝑲𝑲, and 𝑽𝑽 are obtained by a linear function of the output of input 
embeddings 𝑬𝑬, and Multi-Head attention is obtained by concatenating the attention output of 
each head, as follows: 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝐴𝐴𝑇𝑇𝑇𝑇�𝑬𝑬𝑾𝑾𝑖𝑖
𝑄𝑄 ,𝑬𝑬𝑾𝑾𝑖𝑖

𝐾𝐾 ,𝑬𝑬𝑾𝑾𝑖𝑖
𝑉𝑉�, 𝑖𝑖 ∈ [1,𝑛𝑛𝐻𝐻]   (7) 

𝑴𝑴 = 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1,⋯ ,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑾𝑾𝑀𝑀 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑𝑒𝑒   (8) 
where 𝑛𝑛𝐻𝐻  is the number of attention heads, 𝑾𝑾𝑖𝑖

𝑄𝑄 ,𝑾𝑾𝑖𝑖
𝐾𝐾 ,𝑾𝑾𝑖𝑖

𝑉𝑉 ∈ 𝑅𝑅𝑑𝑑𝑒𝑒×𝑑𝑑𝑤𝑤 , 𝑑𝑑𝑤𝑤 = 𝑑𝑑𝑒𝑒/𝑛𝑛𝐻𝐻 , 𝑾𝑾𝑀𝑀 ∈
𝑅𝑅𝑑𝑑𝑒𝑒×𝑑𝑑𝑒𝑒. When the output of the Multi-Head attention is connected with the input residually, 
the layer normalization [33] is applied, as follows: 

𝑬𝑬 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑬𝑬 + 𝑴𝑴) ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑𝑒𝑒   (9) 
where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is layer normalization. 

The Feed Forward operation consists of two linear transformations, with a GELU activation 
function in between; it also performs residual connection and layer normalization operations, 
as follows: 
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𝑭𝑭 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑬𝑬𝑾𝑾1 + 𝒃𝒃1)𝑾𝑾2 + 𝒃𝒃2 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑𝑒𝑒  (10) 
𝑬𝑬 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑬𝑬 + 𝑭𝑭) ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑𝑒𝑒   (11) 

where 𝑾𝑾1 ∈ 𝑅𝑅𝑑𝑑𝑒𝑒×𝑑𝑑1 ,𝑾𝑾2 ∈ 𝑅𝑅𝑑𝑑1×𝑑𝑑𝑒𝑒, and 𝑑𝑑1 is the intermediate size. 
This operation is repeated N times to obtain the final hidden layer vectors, 𝑯𝑯 =

[𝒉𝒉0,𝒉𝒉1,⋯𝒉𝒉𝑛𝑛−1] ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑𝑒𝑒, and the 𝒉𝒉0 corresponding to the classification identifier [CLS] is 
input to the classifier for classification. 

3.2.2 Pre-trained weights 
The BERT architecture uses a bidirectional transformer for encoding and a masked language 
model during pre-training, a small number of words are replaced with MASK or another 
random word with a small probability during training, thereby enhancing the context memory. 
The PPI-related text is very closely related to the context, and fully integrating the context is 
necessary to obtain sufficient semantic feature representation. Two open-source pre-trained 
weights are used for comparative research to use the information in the large-scale unlabeled 
corpus. One is the BERT-Base cased released by Google Research (https://github.com/google-
research/bert), and the other is BioBERT-Base v1.1 (+PubMed 1M) released by DMIS LAB 
(https://github.com/dmis-lab/biobert). The capacity, structure, configuration, and vocabulary 
of the two pre-trained weights are the same, as shown in Table 1. 
 

Table 1. Parameter description of BERT architecture 
Parameter Description Value 

𝑑𝑑𝑒𝑒 dimension of embeddings and hidden layer 768 
N number of transformer blocks 12 
𝑛𝑛𝐻𝐻 number of attention heads 12 
𝑑𝑑1 intermediate size 3072 

 

3.2.3 Fine-tuning 
The self-attention mechanism in the transformer allows BERT architecture to fine-tune 
specific downstream tasks by exchanging appropriate inputs and outputs. The knowledge 
obtained during pre-training on large-scale unlabeled corpus can be transferred to specific 
tasks during fine-tuning. PPI extraction relies on domain knowledge and a large number of 
semantic and syntactic features. Fine-tuning on large-scale pre-training language models can 
greatly improve the efficiency of PPI extraction. We consider the sentence after replacing the 
named entity as input, and whether PPI exists between the two proteins of interest as the binary 
classification output. 

3.3 LSTM-based variant 
In the original architecture of BERT, only the hidden layer vector corresponding to [CLS] is 
used, losing part of the text information. We design a variant structure based on LSTM, named 
ADVBERT-LSTM, as shown in Fig. 3 to fully use of information in addition to [CLS], 
considering the effectiveness of bidirectional LSTM in PPI extraction [15]. 
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Fig. 3. LSTM based variant structure 

 
The hidden layer output vectors except 𝒉𝒉0  are processed by bidirectional LSTM and 

concatenated with 𝒉𝒉0 to generate the final vector for classification, as follows: 
𝒉𝒉𝑙𝑙���⃗ = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝒉𝒉1 → 𝒉𝒉𝑛𝑛−1) ∈ 𝑅𝑅𝑑𝑑𝑙𝑙    (12) 
𝒉𝒉𝑙𝑙�⃖�� = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝒉𝒉𝑛𝑛−1 → 𝒉𝒉1) ∈ 𝑅𝑅𝑑𝑑𝑙𝑙    (13) 

𝒉𝒉0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝒉𝒉0,𝒉𝒉𝑙𝑙���⃗ ,𝒉𝒉𝑙𝑙�⃖��� ∈ 𝑅𝑅𝑑𝑑𝑒𝑒+2×𝑑𝑑𝑙𝑙   (14) 
where 𝑑𝑑𝑙𝑙 is the dimension of the LSTM hidden units. 

The LSTM structure can model the text sequence satisfactorily and capture the long-
distance dependence in the text. The gating mechanism used in LSTM can effectively improve 
the vanishing gradient problem. The combination of LSTM and BERT can further improve 
the performance of PPI extraction. 

3.4 CNN-based variant 
The hidden layer output vectors obtained by the BERT architecture have a higher level of 
abstraction and contain sufficient position information. Therefore, we design another variant 
structure based on CNN to effectively capture other information besides [CLS], named 
ADVBERT-CNN, as shown in Fig. 4. 
 

h1h0

Classifier

c0 c1 c2 c3

h2 h3 h4 h5 h6

cM

Max 
Pooling

 
Fig. 4.  CNN based variant structure 

 
A filter with a window size of 3 is used to perform convolution operations on the hidden 

layer output vectors except 𝒉𝒉0, as follows: 
𝑪𝑪 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝒉𝒉1:3,𝒉𝒉2:4,⋯ ,𝒉𝒉𝑛𝑛−3:𝑛𝑛−1, ) ∈ 𝑅𝑅(𝑛𝑛−3)×𝑑𝑑𝑐𝑐  (15) 

where 𝑑𝑑𝑐𝑐 is the dimension of the CNN hidden units. Then the features are further extracted 
through global max pooling and then concatenated with 𝒉𝒉0 to generate the final vector for 
classification, as follows: 

𝑪𝑪𝑴𝑴 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑪𝑪) ∈ 𝑅𝑅𝑑𝑑𝑐𝑐   (16) 
𝒉𝒉0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒉𝒉0,𝑪𝑪𝑴𝑴) ∈ 𝑅𝑅𝑑𝑑𝑒𝑒+𝑑𝑑𝑐𝑐   (17) 

CNN structure can identify indicative substructures in the input data and capture the local 
features that contribute the most to the prediction task. BERT architecture generates features 
that contain rich semantic and word meaning information through several transformer blocks. 
The CNN structure further combines these features through convolution and pooling 
operations to better represent the entire text sequence. 
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3.5 Classifier 
A linear transformation layer and a softmax function are used to 𝒉𝒉0, which is the final form 
for classification, to generate conditional probabilities in the category space, as follows: 

𝐩𝐩 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒉𝒉0𝑾𝑾𝑐𝑐 + 𝒃𝒃𝑐𝑐) ∈ 𝑅𝑅2   (18) 
where 𝑾𝑾𝑐𝑐 ∈ 𝑅𝑅𝑑𝑑𝑒𝑒×2. Then, the predicted label 𝑦𝑦� is outputted through the argmax function: 

𝑦𝑦� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝒑𝒑)    (19) 
The loss function uses cross-entropy: 

𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑦𝑦𝑦𝑦𝑦𝑦𝑝𝑝1 − (1 − 𝑦𝑦) 𝑙𝑙𝑙𝑙(1 − 𝑝𝑝0)   (20) 
The optimization goal of the model is to minimize the loss value of all training samples. 

4. Results 

4.1 Datasets 
Various institutions provide a series of standard PPI extraction corpora to facilitate the 
majority of researchers to study the problem of PPI relation extraction. The more widely used 
approach in the existing research are AIMed [38], BioInfer [39], HPRD50 [40], IEPA [41], 
and LLL [42]. Each corpus contains multiple sentences from the biomedical literature, and 
each sentence contains one or more protein pairs. The protein named entity has also been 
annotated. Each protein pair is a sample;whether each protein pair has a mutual relationship, 
the interaction relationship is annotated by experts in the relevant field. The protein pairs that 
interact with each other are positive samples, and the nonexistent protein pairs are negative 
samples. 

Some annotation differences in the AIMed and BioInfer corpora are processed following 
the principle of effective length. After the annotation is completed, samples that do not contain 
PROTEIN1 and PROTEIN2 at the same time are deleted. After processing, the statistics of 
each corpus are shown in Table 2. 
 

Table 2. The statistics of PPI extraction corpora 
Corpus Number of samples Positive samples Negative samples Ratio 
AIMed 5669 995 4674 0.21 
BioInfer 10090 2425 7665 0.32 
HPRD50 433 163 270 0.60 

IEPA 817 335 482 0.70 
LLL 330 164 166 0.99 

 

4.2 Evaluation metrics 
We use standard evaluation indicators, including precision (P), recall (R), and F1 score (F1) 
as metrics to evaluate the model performance. The calculation method of each metric is as 
follows: 

𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%     (21) 

𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%    (22) 

𝐹𝐹1 = 2𝑃𝑃𝑃𝑃
𝑃𝑃+𝑅𝑅

× 100%    (23) 
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where TP is the number of samples that are positive and classified as positive, FN is the 
number of samples that are positive and classified as negative, FP is the number of samples 
that are negative and classified as positive, and TN is the number of samples that are negative 
and classified as negative. 

4.3 Experimental settings 
Since these corpora do not officially divide the training and test sets, in this work, 10-fold 
cross-validation is used; it is the most reliable evaluation method. Some hyperparameter 
settings are shown in Table 3. 
 

Table 3. Hyperparameter settings 
Hyperparameter Description Value 

epochs epochs of training 10 
batch size  batch size of training 8 

lr Learning rate 2e-5 
n maximum length of the input sequence 128 
𝑑𝑑𝑙𝑙 dimension of LSTM hidden units 256 
𝑑𝑑𝑐𝑐 dimension of CNN hidden units 128 

 
We trained our model on an NVIDIA GeForce GTX 1660 GPU with the Adam optimizers 

with 𝛽𝛽1 = 0.9 , 𝛽𝛽1 = 0.98 , and 𝜀𝜀 = 10−9 . We used open-source libraries TensorFlow 
(https://www.tensorflow.org/), bert4keras (https://github.com/bojone/bert4keras), and Keras 
(https://keras.io/) to implement our model under the Windows10 environment. The model is 
directly used for prediction after 10 epochs of training in the cross-validation of each fold. 

4.4 Experimental results 
The proposed model is compared with state-of-the-art approaches in the traditional machine 
learning methods DSTK, and other deep learning methods including DNN [9], MCCNN [10], 
sdpCNN [11], McDepCNN [12], LSTM [15], tLSTM [16], DEEPCNN [14], LBERT [20]. 
The compared methods are briefly introduced as follows. The comparison results are shown 
in Table 4. The results of the ADVBERT-CNN and ADVBERT-LSTM models are obtained 
using the BioBERT pre-trained weights and the adversarial coefficient 𝛼𝛼  =0.25, and the 
standard deviation of the 10-fold cross-validation is in parentheses. 
 

Table 4. Comparison results (%) 

Model AIMed BioInfer HPRD50 IEPA LLL 
P R F1 P R F1 P R F1 P R F1 P R F1 

DSTK 68.91 73.24 71.01 75.70 76.90 76.29 76.25 84.15 80.0 75.85 85.15 80.23 87.31 91.18 89.20 
DNN 51.51 63.38 56.12 53.89 72.9 61.63 66.95 83.98 74.23 58.72 92.37 71.28 75.84 91.81 82.00 

MCCNN 76.41 69.00 72.45 81.30 78.10 79.62 - - - - - - - - - 
sdpCNN 64.8 67.8 66.0 73.4 77.0 75.2 - - - - - - - - - 

McDepCNN 67.3 60.1 63.5 62.7 68.2 65.3 - - - - - - - - - 
LSTM 78.8 75.2 76.9 87.0 87.4 87.2 - - - - - - - - - 
tLSTM 81.4 81.9 81.6 88.9 89.3 89.1 81.7 82.3 81.3 78.6 78.7 78.5 84.8 84.3 84.2 

DEEPCNN 79.0 76.8 77.6 87.4 86.5 86.9 74.9 82.8 77.7 71.6 80.6 75.5 80.5 87.2 83.2 
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LBERT 73.6 74.5 74.0 73.0 72.5 72.8 85.8 85.2 85.5 81.4 86.2 83.7 83.8 88.4 86.0 
ADVBERT-

LSTM 
84.74 
(4.12) 

83.39 
(2.49) 

83.93 
(1.19) 

89.94 
(2.43) 

90.08 
(2.43) 

89.97 
(1.25) 

83.66 
(8.99) 

87.17 
(8.81) 

84.78 
(5.61) 

85.34 
(6.37) 

84.15 
(5.75) 

84.48 
(3.77) 

89.62 
(9.26) 

88.31 
(8.61) 

88.65 
(7.45) 

ADVBERT-
CNN 

84.34 
(3.89) 

81.40 
(3.53) 

82.72 
(1.93) 

91.37 
(1.65) 

89.28 
(2.30) 

90.31 
(1.83) 

83.40 
(6.44) 

85.40 
(8.46) 

83.94 
(4.12) 

84.13 
(4.83) 

85.95 
(7.02) 

84.88 
(4.80) 

87.98 
(8.81) 

89.60 
(6.22) 

88.61 
(6.56) 

 
The proposed model has achieved the highest F1 scores on the three corpora of AIMed, 

BioInfer, and IEPA. The comparison between ADVBERT-LSTM and the previous state-of-
the-art method indicates that, compared with tLSTM, the F1 score of the AIMed increased by 
2.3 percentage points, 0.8 percentage points for the BioInfer corpus.The F1 score of the 
HPRD50 was 0.8 percentage points lower than that of LBERT, and that of the IEPA increased 
by 0.7 percentage points. The F1 score of the LLL was 0.55 percentage points lower than 
DSTK. DSTK and LBERT performed poorly on the two large sample size corpora of AIMed 
and BioInfer. However, the proposed model has achieved significant improvement on the 
AIMed and BioInfer corpora compared with the two models. For the three small sample size 
corpora of HPRD50, IEPA, and LLL, the proposed model has also achieved a significant 
improvement over tLSTM. The proposed model can achieve better performance on the large 
sample size and small sample size corpora. 

The use of large pre-trained language models can greatly improve the performance of 
downstream tasks, given that the lexical and syntactic features required by the downstream 
tasks are learned from a large amount of corpus, especially the corpus in the field, in the pre-
training process. Fine-tuning with the target corpus can complete the PPI extraction task 
effectively, and can improve the problem of the deep learning model being restricted by the 
sample size to a certain extent, because the features that cannot be fully learned on the small 
sample size data may have been effectively represented in the pre-training process. 

5. Discussion 

5.1 Comparisons between different methods 
The advantage of the deep learning models over the traditional machine learning models is 
that manually designing feature engineering is unnecessary. The model itself can mine the 
potential features of the data, as much as possible, but it requires a sufficient amount of data 
to be effective. Therefore, on the two small-sample datasets of IEPA and LLL, the DSTK 
method using kernel function and machine learning model has certain advantages over the two 
deep learning methods of tLSTM and DEEPCNN. However, for AIMed and BioInfer datasets 
with large sample sizes, the advantages of deep learning methods are highlighted. Deep 
learning methods, such as LSTM, tLSTM, and DEEPCNN, have achieved significant 
improvements compared with DSTK methods. The LBERT method that also uses a large-scale 
pre-training language model is based on deep learning technology. However, it has learned 
sufficient lexical and syntactic features from a large amount of unlabeled corpus during the 
pre-training process. Thus, it also obtained considerable performance on small sample size 
datasets. 

The proposed ADVBERT–CNN and ADVBERT–LSTM models use adversarial training to 
further exert the advantages of large-scale pre-training language models and enhance the 
robustness of the models. Through the combination with CNN and LSTM structure, the ability 
to mine the potential features of text data is improved, and the accuracy of text feature 
modeling is enhanced. Therefore, the proposed model has achieved good performance on large 
sample size and small sample size data. In particular, the highest F1 scores were achieved on 
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the three corpora, namely, AIMed, BioInfer, and IEPA. On the two other datasets, the F1 
scores obtained are also very close to the best performance methods. 

In summary, the proposed method further improves the performance of PPI extraction, and 
at the same time introduces large-scale pre-training language models and adversarial training 
techniques into the field of PPI extraction. 

5.2 Performance with different pre-trained weights 
Experiments were performed using the general BERT (BERT-Base cased) pre-trained weights 
and the domain-related BioBERT (BioBERT-Base cased v1.1) pre-trained weights to explore 
the impact of different pre-trained weights. The experimental results of the original 
ADVBERT model are shown in Fig. 5. 
 

(a) (b)  
Fig. 5. F1-score (%) of the original ADVBERT model using BERT and BioBERT pre-training  

weights with adversarial training (a) and without adversarial training (b) 
 

The experimental results of the LSTM based variant ADVBERT-LSTM model are shown 
in Fig. 6. 
 

(a) (b)  
Fig. 6. F1-score (%) of ADVBERT-LSTM model using BERT and BioBERT pre-training weights 

with adversarial training (a) and without adversarial training (b) 
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The experimental results of the CNN based variant ADVBERT-CNN model are shown in 
Fig. 7. 
 

(a) (b)  
Fig. 7. F1 score (%) of the ADVBERT-CNN model using BERT and BioBERT pre-training weights 

with adversarial training (a) and without adversarial training (b) 
 

Regardless of the variant structure used and whether adversarial training is applied, the 
results obtained by BioBERT pre-trained weights are better than those obtained by BERT pre-
trained weights. This finding shows that pre-training with corpus in the domain can help 
improve the effect of downstream tasks. On the large sample size corpora of AIMed and 
BioInfer, compared with the BERT pre-trained weight, using the BioBERT pre-trained weight 
can usually achieve a 1 to 2 percentage point increase in F1 score. On the HPRD50, IEPA, and 
LLL with smaller sample sizes, the gap is even more evident. The sample size limits the effect 
of the deep learning model given that the large-capacity model cannot be fully trained with a 
small amount of data. However, the BioBERT pre-trained weights are constructed on abundant 
text in the field. Thus, it contains more domain-related semantic and syntactic information, 
which can be well transformed to downstream tasks. 

5.3 Performance using different variants 
Experiments were carried out using the original ADVBERT model and the two variants based 
on CNN and LSTM (using BioBERT pre-trained weights). The results are shown in Fig. 8. 

(a) (b)  
Fig. 8. F1-score (%) of the original ADVBERT model and its variants with adversarial training (a) 

and without adversarial training (b) 
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Fig. 8 shows that regardless of whether adversarial training is used or not, the performance 

of original ADVBERT and the two variants on AIMed and BioInfer is unremarkably different. 
When adversarial training is unused, the LSTM based variant achieves the best performance 
on the IEPA. However, the CNN-based variant achieves the best performance on the 
HPRD500 and LLL. When using adversarial training (𝛼𝛼  =0.25), the LSTM-based variant 
achieved the best performance on the HPRD500 and LLL, and the CNN-based variant 
achieved the best performance on the IEPA dataset. In summary, the use of variant structures 
can further utilize hidden layer information in addition to [CLS], and can slightly improve the 
accuracy of PPI extraction. 

 

5.4 Effect of the adversarial coefficient 
Experiments were carried out on the original ADVBERT model and its variants with different 
adversarial coefficient values and without adversarial training (using BioBERT pre-trained 
weights), to illustrate the advantages of adversarial training and the effect of adversarial 
coefficient 𝛼𝛼. 
 
 

 
Fig. 9. Effect of different adversarial coefficients on the original ADVBERT model 

 
Fig. 9 shows the effect of different adversarial coefficients on the original ADVBERT 

model. Fig. 9 shows that all corpora, except the IEPA, achieved the highest F1 scores when 𝛼𝛼 
=0.25. When 𝛼𝛼 exceeds 0.25, as 𝛼𝛼 increases, F1-scores have declined to a certain extent, but 
overall it is higher than that without adversarial training. 
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Fig. 10. Effect of different adversarial coefficients on ADVBERT-LSTM model 

 
Fig. 10 shows the effect of different adversarial coefficients on LSTM based variant 

ADVBERT-LSTM. On the IEPA, ADVBERT-LSTM obtained the highest F1-score without 
using adversarial training. The performance of using adversarial training on other corpora is 
still better than not using the approach. On BioInfer and LLL, the F1 score increases with the 
increase in 𝛼𝛼. However, the F1 score still shows a downward trend after 𝛼𝛼 exceeds 0.25 on 
AIMed and HPRD50. 
 

 
Fig. 11. Effect of different adversarial coefficients on ADVBERT-CNN model 

 
Fig. 11 shows the effect of different adversarial coefficients on CNN-based variant. For 

ADVBERT-CNN model, the performance of using adversarial training is better than that of 
not using it. In most corpora, the F1-score still shows a downward trend after 𝛼𝛼 exceeds 0.25. 

In summary, the performance of using adversarial training is better than not using 
adversarial training in most cases. Better performance can be achieved when 𝛼𝛼 is 0.25, but 
extremely large 𝛼𝛼 may also cause a decrease in performance. 
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5.4 Error analysis 
In this section, several typical error cases are selected for analysis from the prediction results 
of each corpus, which mainly includes three types, namely, protein named entity nesting, the 
sentence contains too many named entities of protein, and the annotation of ambiguity. 

The largest proportion is the error caused by the protein named entity nesting, such as “A 
bacterially expressed 318-amino acid fragment, PROTEIN1 (418-736), containing the 
amphipathic helix region, was able to bind PROTEIN2 alpha. ” In this sentence, PROTEIN1 
refers to “Ht 31” and PROTEIN2 refers to “RII”, “Ht 31” interacts with “RII alpha” but not 
with “RII,” the model inaccurately predicts it to be positive. 

Sentences containing many named entities of  protein, mostly in BioInfer. For instance, 
“Abundance of PROTEIN , PROTEIN , PROTEIN and PROTEIN , PROTEIN1 PROTEIN , 
and PROTEIN is not affected by the differential PROTEIN2 expression. ” A large number of 
named entities of protein leads to intricate interactions that should be predicted. These named 
entities of protein form many pairs, but the textual information of sentences is very limited. 
The model can accurately predicts most pairs, but it also inaccurately predicts on a small 
number of pairs. 

The annotation of ambiguity, such as “Transient expression of PROTEIN and a null mutant 
of PROTEIN1 (PTP-1CM) in COS cells resulted in an increase in tyrosyl phosphorylation of 
PROTEIN2 and its interaction with PTP-1CM” in HPRD50, in which “CD22” appeared twice. 
For PTP-1C and the previous CD22, the label given by the corpus is false. However, for PTP-
1C and the latter CD22, the label given by the corpus is true, thereby causing interference to 
the model. 

5.5 Cross-corpus evaluation 
Cross-corpus evaluation indicates training on one corpus and testing on another corpus to 
evaluate the generalization of the PPI extraction model. We only use AIMed and BioInfer as 
the training corpora because the sample size of other corpora is extremely small. The 
experimental results using AIMed as the training corpus are shown in Table 5. The 
experimental results with BioInfer as the training corpus are shown in Table 6. PIPE [43] is a 
knowledge-based state-of-the-art method for PPI extraction cross-corpus evaluation. 
 

Table 5. Cross-corpus evaluation results using AIMed as the training corpus (F1-score %) 
Model BioInfer HPRD50 IEPA LLL 
PIPE 58.2 69.4 69.0 75.2 

McDepCnn 48.0 - - - 
LSTM 49.3 - - - 
tLSTM 45.0 39.1 37.9 33.5 

ADVBERT-LSTM 43.40 74.81 26.02 37.86 
ADVBERT-CNN 41.29 69.37 30.85 26.45 

 
Table 5 shows that when AIMed is used as the training corpus, the proposed model 

performs poorly on most corpora. The training models on AIMed become over-fitting when 
learning various complex situations because the data in AIMed are the most complex. 
However, knowledge-based methods can avoid this limitation. 
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Table 6. Cross-corpus evaluation results using BioInfer as the training corpus 

Model AIMed HPRD50 IEPA LLL 
PIPE 52.1 71.3 72.3 78.5 

McDepCnn 49.9 - - - 
LSTM 50.7 - - - 
tLSTM 50.0 45.5 40.0 33.5 

ADVBERT-LSTM 54.55 78.93 75.89 78.05 
ADVBERT-CNN 54.20 77.69 78.21 79.88 

 
Table 6 shows that when BioInfer was used as the training corpus, the proposed model 

achieved the highest F1-scores in the remaining four corpora. The BioInfer corpus has the 
largest amount of data without interference from a large number of complex cases; thus the 
model performs better in cross-corpus evaluation. 

6. Conclusion 
The ADVBERT model and its two variant structures are proposed for the PPI extraction task. 
The BioBERT pre-trained weights constructed on the large-scale domain corpus are used to 
enhance the learning of the semantic features and syntactic features of the PPI-related text. 
Adversarial training is introduced, and adversarial perturbations are applied to the token 
embedding of the model, thereby improving the robustness of the PPI extraction model. 
Experiments on five PPI extracting public corpora show that the proposed approach has 
achieved significant improvement. In the future, we will continue to explore how to further 
utilize the advantages of the large pre-trained language models, and find more effective 
approaches to generate adversarial perturbations to improve the generalization of the PPI 
extraction model. 
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