Acknowledgement
이 논문은 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021S1A5A2A01061459). 이 논문은 과학기술정보통신부와 정보통신산업진흥원의 '고성능 컴퓨팅 지원' 사업의 지원을 받아 수행하였음.
References
- Alexey D., L. Beyer, A. Kolesnikov, D. Weissemborn, X. Zhai, T. Unterthiner, M. Dehgani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929 (2020).
- Ashfaq, R. A. R., W. Z. Wang, J. Z. Huang, H. Abbas, and Y. L. He, "Fuzziness based semi-supervised learning approach for intrusion detection system," Information sciences 378 (2017): 484-497. https://doi.org/10.1016/j.ins.2016.04.019
- Bergmann, P., M. Fauser, D. Sattlegger, and C. Steger, "Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
- Bochkovskiy, A., C. Y. Wang, and H. Y. M. Liao, "YOLOv4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934 (2020).
- Chalapathy, R. and S. Chawla, "Deep learning for anomaly detection: A survey," arXiv preprint arXiv:1901.03407 (2019).
- Chandola, V., A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM computing surveys (CSUR) 41.3 (2009): 1-58. https://doi.org/10.1145/1541880.1541882
- Chensi C., F. Li, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo and Z. Xie, "Deep learning and its applications in biomedicine," Genomics, proteomics & bioinformatics 16.1 (2018): 17-32. https://doi.org/10.1016/j.gpb.2017.07.003
- Christodorescu, M., S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, "Semantics-aware malware detection," 2005 IEEE symposium on security and privacy (S&P'05). IEEE, 2005.
- Claudio, D. S., C. Sansone, and M. Vento, "To reject or not to reject: that is the question-an answer in case of neural classifiers," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 30.1 (2000): 84-94. https://doi.org/10.1109/5326.827457
- Cohen, M. J. and S. Avidan, "Transformaly--Two (Feature Spaces) Are Better Than One," arXiv preprint arXiv:2112.04185 (2021).
- Cohen, N., R. Abutbul, and Y. Hoshen, "Out-of-Distribution Detection without Class Labels," arXiv preprint arXiv:2112.07662 (2021).
- Di Biase, G., H. Blum, R. Siegwart, and C. Cadena, "Pixel-wise anomaly detection in complex driving scenes," Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
- Dosovitskiy, A., L. Beyer, A. Kolensnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929 (2020).
- Fernando, T., S. Denman, D.. Ahmedt-Aristizabal, S. Sridharan, K. R. Laurens, P.Johnston, and C. Fookes, "Neural memory plasticity for medical anomaly detection," Neural Networks 127 (2020): 67-81. https://doi.org/10.1016/j.neunet.2020.04.011
- Fu, K., D. Cheng, Y. Tu, and L. Zhang, "Credit card fraud detection using convolutional neural networks," International conference on neural information processing. Springer, Cham, 2016.
- Gaus, Y. F. A., N. Bhowmik, S. Akcay, P. M. Guillen-Garcia, J. W. Barker, and T. P. Breckon, "Evaluation of a dual convolutional neural network architecture for object-wise anomaly detection in cluttered X-ray security imagery," 2019 international joint conference on neural networks (IJCNN). IEEE, 2019.
- Ge, Z., S. Liu, F. Wang, Z. Li, and J. Sun, "YOLOX: Exceeding YOLO series in 2021," arXiv preprint arXiv:2107.08430 (2021).
- Ghosh, S. and D. L. Reilly, "Credit card fraud detection with a neural-network," System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii International Conference on. Vol. 3. IEEE, 1994.
- Girshick, R., "Fast R-CNN," Proceedings of the IEEE International Conference on Computer Vision (2015).
- Girshick, R., J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014).
- Goldstein, M. and S. Uchida, "A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data," PloS one 11.4 (2016): e0152173. https://doi.org/10.1371/journal.pone.0152173
- Gornitz, N., M. Kloft, K. Rieck, and U. Brefeld, "Toward supervised anomaly detection," Journal of Artificial Intelligence Research 46 (2013): 235-262. https://doi.org/10.1613/jair.3623
- Hawkins, D. M., "Identification of outliers," Vol. 11. London: Chapman and Hall, 1980.
- He, K., X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016).
- Hochreiter, S. and J. Schmidhuber, "Long short-term memory," Neural computation 9.8 (1997): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Howard, A. G., M. Zhu, B. Chen, D. Kalenichenk o, W. Wang, T. Weyand, M. Andreetto, and H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications," arXiv preprint arXiv:1704.04861. (2017).
- Jain, A. K. and R. C. Dubes, "Algorithms for clustering data. Prentice-Hall," Inc., 1988.
- Jena, B., G. K. Nayak, and S. Saxena, "Convolutional neural network and its pretrained models for image classification and object detection: A survey," Concurrency and Computation: Practice and Experience 34.6 (2022): e6767.
- Ji, X., J. F. Henriques, and A. Vedaldi, "Invariant information clustering for unsupervised image classification and segmentation," Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
- Johnson, J., A. Karpathy, and L. Fei-Fei, "Densecap: Fully convolutional localization networks for dense captioning," Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Kiran, B. R., D. M. Thomas, and R. Parakkal, "An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos," Journal of Imaging 4.2 (2018): 36. https://doi.org/10.3390/jimaging4020036
- Lecun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, "Backpropagation applied to handwritten zip code recognition," Neural computation 1.4 (1989): 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- Li, W., V. Mahadevan, and N. Vasconcelos, "Anomaly detection and localization in crowded scenes." IEEE transactions on pattern analysis and machine intelligence 36.1 (2013): 18-32. https://doi.org/10.1109/TPAMI.2013.111
- Lin, T. Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, "Microsoft coco: Common objects in context," European conference on computer vision. Springer, Cham, 2014.
- Liu, Y., S. Garg, J. Nie, Y, Zhang, Z. Xiong, J. Kang, and M. S. Hossain, "Deep anomaly detection for time-series data in industrial IoT: A communication-efficient on-device federated learning approach," IEEE Internet of Things Journal 8.8 (2020): 6348-6358.
- Logothetis, N. K. and D. L. Sheinberg, "Visual object recognition," Annual review of neuroscience 19.1 (1996): 577-621. https://doi.org/10.1146/annurev.ne.19.030196.003045
- Mitchell, W., G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A.S. Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, and L. Schmidt, "Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time," arXiv pre print arXiv:2203.05482 (2022).
- Pierre, B. and K. Hornik, "Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima," Neural Networks, Vol.2, (1989), 53~58. https://doi.org/10.1016/0893-6080(89)90014-2
- Redmon, J. and A. Farhadi, "YOLOv3: An incremental improvement," arXiv preprint arXiv:1804.02767 (2018).
- Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Reiss, T., N. Cohen, L. Bergman, and Y. Hoshen, "Panda: Adapting pretrained features for anomaly detection and segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
- Ren, S., K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," Advances in Neural Information Processing Systems (2015).
- Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "Imagenet large scale visual recognition challenge," International journal of computer vision 115.3 (2015): 211-252. https://doi.org/10.1007/s11263-015-0816-y
- Seonwoo M., L. Byunghan and Y. Sungroh, "Deep learning in bioinformatics," Briefings in bioinformatics 18.5 (2017): 851-869. https://doi.org/10.1093/bib/bbw068
- Shen, A., R. Tong, and Y. Deng, "Application of classification models on credit card fraud detection," 2007 International conference on service systems and service management. IEEE, 2007.
- Shvetsova, N., B. Bakker, I. Fedulova, H. Schulz and D. Dylov, "Anomaly detection in medical imaging with deep perceptual autoencoders," IEEE Access 9 (2021): 118571-118583. https://doi.org/10.1109/ACCESS.2021.3107163
- Simonyan, K. and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556 (2014).
- Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016).
- Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015).
- Tao, X., D. Zhang, W. Ma, X. Liu, and D. Xu, "Automatic metallic surface defect detection and recognition with convolutional neural networks," Applied Sciences 8.9 (2018): 1575. https://doi.org/10.3390/app8091575
- Tao. Y., X. Xiao, and S. Zhou. "Mining distance-based outliers from large databases in any metric space," Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006.
- Van, N. T., T. N. Thinh, and L. T. Sach, "An anomaly-based network intrusion detection system using deep learning." 2017 international conference on system science and engineering (ICSSE). IEEE, 2017.
- Vicente, S., J. Carreira, L. Agapito, and J. Batista, "Reconstructing pascal voc," Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
- Xie, X., C. Wang, S. Chen, G. Shi, and Z. Zhao, "Real-time illegal parking detection system based on deep learning," Proceedings of the 2017 International Conference on Deep Learning Technologies. 2017.
- Xu, G., S. Niu, M. Tan, Y. Luo, Q. Du, and Q. Wu, "Towards accurate text-based image captioning with content diversity exploration," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
- Xu, K., J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio, "Show, attend and tell: Neural image caption generation with visual attention," In International conference on machine learning, 2015, (pp. 2048-2057). PMLR.