• Title/Summary/Keyword: Pre-intuitive

Search Result 31, Processing Time 0.026 seconds

Design and Performance Analysis of ML Techniques for Finger Motion Recognition (손가락 움직임 인식을 위한 웨어러블 디바이스 설계 및 ML 기법별 성능 분석)

  • Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • Recognizing finger movements have been used as a intuitive way of human-computer interaction. In this study, we implement an wearable device for finger motion recognition and evaluate the accuracy of several ML (Machine learning) techniques. Not only HMM (Hidden markov model) and DTW (Dynamic time warping) techniques that have been traditionally used as time series data analysis, but also NN (Neural network) technique are applied to compare and analyze the accuracy of each technique. In order to minimize the computational requirement, we also apply the pre-processing to each ML techniques. Our extensive evaluations demonstrate that the NN-based gesture recognition system achieves 99.1% recognition accuracy while the HMM and DTW achieve 96.6% and 95.9% recognition accuracy, respectively.

A Study on the Proposal of the Affordance Applied to GUI Design: Focused on the SNS Application (어포던스 이론이 적용된 GUI 디자인 제언에 관한 연구 -SNS 앱을 중심으로-)

  • Lu, Han-Yi;Seo, Han-Sok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.113-122
    • /
    • 2018
  • Mobile GUI design is changing from an existing design that emphasizes intuitive cognitive effects to an affordance design that naturally triggers users' behaviors. However, in the GUI design, the current affordance only uses some partial design elements and cannot achieve effective design, and the concept of affordance design still has confusion and uncertainty. For this reason, this paper redefines affordance by examining the concepts and types of it in the pre-research. In addition, through questioning the type of affordance, a questionnaire was designed for the GUI elements of social software. According to the results of the survey, the evaluation of the affordance of the GUI design elements was derived, and the GUI design of the social software was compared and analyzed. Then according to the deep interviews, a GUI design proposal that can effectively use affordance was proposed.

Effects of Interaction Range on the Behavior of Opinion Consensus

  • Lee, Seungjae;Cho, Young Sul;Hong, Hyunsuk
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1406-1409
    • /
    • 2018
  • We have frequently encountered the rapid changes that prevalent opinion of the social community is toppled by a new and opposite opinion against the pre-exiting one. To understand this interesting process, mean-field model with infinite-interaction range has been mostly considered in previous studies S. A. Marvel et al., Phys. Rev. Lett. 110, 118702 (2012). However, the mean-field interaction range is lack of reality in the sense that any individual cannot interact with all of the others in the community. Based on it, in the present work, we consider a simple model of opinion consensus so-called basic model on the low-dimensional lattices (d = 1, 2) with finite interaction range. The model consists of four types of subpopulations with different opinions: A, B, AB, and the zealot of A denoted by $A_c$, following the basic model shown in the work by S. A. Marvel et al.. Comparing with their work, we consider the finite range of the interaction, and particularly reconstruct the lattice structure by adding new links when the two individuals have the distance < ${\sigma}$. We explore how the interaction range ${\sigma}$ affects the opinion consensus process on the reconstructed lattice structure. We find that the critical fraction of population for $A_c$ required for the opinion consensus on A shows different behaviors in the small and large interaction ranges. Especially, the critical fraction for $A_c$ increases with the size of ${\sigma}$ in the region of small interaction range, which is counter-intuitive: When the interaction range is increased, not only the number of nodes affected by $A_c$ but also that affected by B grows, which is believed to cause the increasing behavior of the critical fraction for $A_c$. We also present the difference of dynamic process to the opinion consensus between the regions of small and large interaction ranges.

An Analysis of Domestic Research Trends of Probability Education (확률교육에 관한 국내 연구논문의 동향 분석)

  • Park, Minsun;Lee, Eun-Jung
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.4
    • /
    • pp.349-367
    • /
    • 2021
  • In this study, 85 studies on probability education from 2000 to 2020 were analyzed by publishing year, journals, research subjects, and research topics. Especially, fundamental probabilistic ideas presented by Batanero et al.(2016) were applied to examine which topics were dominant in domestic probability education research. As a result, it was found that there has been a few research in probability education in Korea during the past 20 years, and the number of human subject studies was slightly more than the number of non-human subject studies. In addition, the analysis of research topics according to the fundamental probabilistic ideas showed that two topics, conditional probability and independence and combinatorial enumeration and counting, were dominant in domestic probability education research. However, while both conditional probability and independence and combinatorial enumeration and counting are introduced to young children using intuitive manners in international probability education research, subjects related to these topics were primarily high school students and pre and in-service teachers. Based on the results of this study, the implications for the goal and the direction of future probability education research were discussed.

A Development and Application of Data Visualization EducationProgram for 3rd Grade Students in Elementary School (초등학교 3학년 학생들을 위한 데이터 시각화 교육 프로그램 개발 및 적용)

  • Jiseon Woo;Kapsu Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.6
    • /
    • pp.481-490
    • /
    • 2022
  • With the development of computing technology, the big data era has arrived, and we live with a lot of data around us. Elementary school students are no exception. Therefore, it is very important to learn to process data from elementary school. Since elementary school students have intuitive thinking, data visualization, which expresses data directly in pictures, is an important learning element. In this study, we study how effective elementary school students can visualize data in their daily lives to improve their information processing capabilities. Adata visualization program was developed by organizing and visualizing data using data visualization tools for the 8th class, which can be done by third graders in elementary school, and then experiencing the process of interaction. As a result of applying the developed program to 186 students in 7 classes, knowledge information processing competency factors were evaluated before and after class. As a result of the pre- and post-test, there was a significant difference in knowledge information processing capabilities. Therefore, the data visualization program developed in this study is effective.

Mining Quantitative Association Rules using Commercial Data Mining Tools (상용 데이타 마이닝 도구를 사용한 정량적 연관규칙 마이닝)

  • Kang, Gong-Mi;Moon, Yang-Sae;Choi, Hun-Young;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.97-111
    • /
    • 2008
  • Commercial data mining tools basically support binary attributes only in mining association rules, that is, they can mine binary association rules only. In general, however. transaction databases contain not only binary attributes but also quantitative attributes. Thus, in this paper we propose a systematic approach to mine quantitative association rules---association rules which contain quantitative attributes---using commercial mining tools. To achieve this goal, we first propose an overall working framework that mines quantitative association rules based on commercial mining tools. The proposed framework consists of two steps: 1) a pre-processing step which converts quantitative attributes into binary attributes and 2) a post-processing step which reconverts binary association rules into quantitative association rules. As the pre-processing step, we present the concept of domain partition, and based on the domain partition, we formally redefine the previous bipartition and multi-partition techniques, which are mean-based or median-based techniques for bipartition, and are equi-width or equi-depth techniques for multi-partition. These previous partition techniques, however, have the problem of not considering distribution characteristics of attribute values. To solve this problem, in this paper we propose an intuitive partition technique, named standard deviation minimization. In our standard deviation minimization, adjacent attributes are included in the same partition if the change of their standard deviations is small, but they are divided into different partitions if the change is large. We also propose the post-processing step that integrates binary association rules and reconverts them into the corresponding quantitative rules. Through extensive experiments, we argue that our framework works correctly, and we show that our standard deviation minimization is superior to other partition techniques. According to these results, we believe that our framework is practically applicable for naive users to mine quantitative association rules using commercial data mining tools.

Hierarchical Browsing Interface for Geo-Referenced Photo Database (위치 정보를 갖는 사진집합의 계층적 탐색 인터페이스)

  • Lee, Seung-Hoon;Lee, Kang-Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.25-33
    • /
    • 2010
  • With the popularization of digital photography, people are now capturing and storing far more photos than ever before. However, the enormous number of photos often discourages the users to identify desired photos. In this paper, we present a novel method for fast and intuitive browsing through large collections of geo-referenced photographs. Given a set of photos, we construct a hierarchical structure of clusters such that each cluster includes a set of spatially adjacent photos and its sub-clusters divide the photo set disjointly. For each cluster, we pre-compute its convex hull and the corresponding polygon area. At run-time, this pre-computed data allows us to efficiently visualize only a fraction of the clusters that are inside the current view and have easily recognizable sizes with respect to the current zoom level. Each cluster is displayed as a single polygon representing its convex hull instead of every photo location included in the cluster. The users can quickly transfer from clusters to clusters by simply selecting any interesting clusters. Our system automatically pans and zooms the view until the currently selected cluster fits precisely into the view with a moderate size. Our user study demonstrates that these new visualization and interaction techniques can significantly improve the capability of navigating over large collections of geo-referenced photos.

A Historical, Mathematical, Psychological Analysis on Ratio Concept (비 개념에 대한 역사적, 수학적, 심리적 분석)

  • 정은실
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.421-440
    • /
    • 2003
  • It is difficult for the learner to understand completely the ratio concept which forms a basis of proportional reasoning. And proportional reasoning is, on the one hand, the capstone of children's elementary school arithmetic and, the other hand, it is the cornerstone of all that is to follow. But school mathematics has centered on the teachings of algorithm without dealing with its essence and meaning. The purpose of this study is to analyze the essence of ratio concept from multidimensional viewpoint. In addition, this study will show the direction for improvement of ratio concept. For this purpose, I tried to analyze the historical development of ratio concept. Most mathematicians today consider ratio as fraction and, in effect, identify ratios with what mathematicians called the denominations of ratios. But Euclid did not. In line with Euclid's theory, ratio should not have been represented in the same way as fraction, and proportion should not have been represented as equation, but in line with the other's theory they might be. The two theories of ratios were running alongside each other, but the differences between them were not always clearly stated. Ratio can be interpreted as a function of an ordered pair of numbers or magnitude values. A ratio is a numerical expression of how much there is of one quantity in relation to another quantity. So ratio can be interpreted as a binary vector which differentiates between the absolute aspect of a vector -its size- and the comparative aspect-its slope. Analysis on ratio concept shows that its basic structure implies 'proportionality' and it is formalized through transmission from the understanding of the invariance of internal ratio to the understanding of constancy of external ratio. In the study, a fittingness(or comparison) and a covariation were examined as the intuitive origins of proportion and proportional reasoning. These form the basis of the protoquantitative knowledge. The development of sequences of proportional reasoning was examined. The first attempts at quantifying the relationships are usually additive reasoning. Additive reasoning appears as a precursor to proportional reasoning. Preproportions are followed by logical proportions which refer to the understanding of the logical relationships between the four terms of a proportion. Even though developmental psychologists often speak of proportional reasoning as though it were a global ability, other psychologists insist that the evolution of proportional reasoning is characterized by a gradual increase in local competence.

  • PDF

A Case Study of Elementary Students' Developmental Pathway of Spatial Reasoning on Earth Revolution and Apparent Motion of Constellations (지구의 공전과 별자리의 겉보기 운동에 대한 초등학생들의 공간적 추론 발달 경로의 사례 연구)

  • Maeng, Seungho;Lee, Kiyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.481-494
    • /
    • 2018
  • This study investigated elementary students' understanding of Earth revolution and its accompanied apparent motion of constellation in terms of spatial reasoning. We designed a set of multi-tiered constructed response items in which students described their own idea about the reason of consecutive movement of constellations for three months and drew a diagram about relative locations of the Sun, the Earth, and the constellations. Sixty-five sixth grade students from four elementary schools participated in the tests both before and after science classes on the relative movement of Earth and Moon. Their answers to the items were categorized inductively in terms of transforming frames of reference which are observed on the Earth and designed from the Space-based perspective. We analyzed those categories by the levels of spatial reasoning and depicted the change of students' levels between pre/post-tests so that we could get an idea on the preliminary developmental pathway of students' understanding of this topic. The lower anchor description was that constellations move around the Earth with geocentric perspective. Intermediate level descriptions were planar understanding of Earth movement, intuitive idea on constellation movement along with the Earth. Students with intermediate levels did not reach understanding of the apparent motion of constellations. As the upper anchor description students understood the apparent motion of constellations according to the Earth revolution and could transform their frames of reference between Earth-based view and Space-based view. The features as the case of evolutionary learning progressions and critical points of students' development for this topic were discussed.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.