• Title/Summary/Keyword: Practical Management

Search Result 5,736, Processing Time 0.034 seconds

Comparison of Inpatient Medical Use between Non-specialty and Specialty Hospitals: A Study Focused on Knee Replacement Arthroplasty (전문병원과 비전문병원 입원환자의 의료이용 비교 분석: 인공관절치환술(슬관절)을 대상으로)

  • Mi-Sung Kim;Hyoung-Sun Jeong;Ki-Bong Yoo;Je-Gu Kang;Han-Sol Jang;Kwang-Soo Lee
    • Health Policy and Management
    • /
    • v.34 no.1
    • /
    • pp.78-86
    • /
    • 2024
  • Background: The purpose of this study was to determine the effectiveness of the specialty hospital system by comparing the medical use of inpatients who had artificial joint replacement surgery in specialty hospitals and non-specialty hospitals. Methods: This study utilized 2021-2022 healthcare benefit claims data provided by the Health Insurance Review and Assessment Service. The dependent variable is inpatient medical use which is measured in terms of charges per case and length of stay. The independent variable was whether the hospital was designated as a specialty hospital, and the control variables were patient-level variables (age, gender, insurer type, surgery type, and Charlson comorbidity index) and medical institution-level variables (establishment type, classification, location, number of orthopedic surgeons, and number of nurses). Results: The results of the multiple regression analysis between charges per case and whether a hospital is designated as a specialty hospital showed a statistically significant negative relationship between charges per case and whether a hospital is designated as a specialty hospital. This suggests a significant low in charges per case when a hospital is designated as a specialty hospital compared to a non-specialty hospital, indicating that there is a difference in medical use outcomes between specialty hospitals and non-specialty hospitals inpatients. Conclusion: The practical implications of this study are as follows. First, the criteria for designating specialty hospitals should be alleviated. In our study, the results show that specialty hospitals have significantly lower per-case costs than non-specialty hospitals. Despite the cost-effectiveness of specialty hospitals, the high barriers to be designated for specialty hospitals have gathered the specialty hospitals in metropolitan and major cities. To address the regional imbalance of specialty hospitals, it is believed that ease the criteria for designating specialty hospitals in non-metropolitan areas, such as introducing "semi-specialty hospitals (tentative name)," will lead to a reduction in health disparities between regions and reduce medical costs. Second, it is necessary to determine the appropriateness of the size of hospitals' medical staff. The study found that the number of orthopedic surgeons and nurses varied in charges per case. Therefore, it is believed that appropriately allocating hospital medical staff can maximize the cost-effectiveness of medical services and ultimately reduce medical costs.

A Study on the Effects of Young Entrepreneur Competency on Startup Performance: Focusing on the Mediating Effect of Network Activities (청년창업가의 역량이 창업성과에 미치는 영향 요인에 관한 연구: 네트워크활동의 매개효과 중심으로)

  • Hyun Chae Song;Chul-Moo Heo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.141-157
    • /
    • 2024
  • This study analyzes the effect of enterepreneurial competencies on start-up performance through network activities for young entrepreneurs. Enterepreneurial competencies are composed of opportunity recognition competencies, marketing competencies, technical competencies, and creative competencies. A total of 354 questionnaires collected from young entrepreneurs residing in the country were used for empirical analysis. SPSS v28.0 and PROCESS macro v4.3 were analyzed based on the research model of a single-parameter single-mediated model. As a result of the analysis, first, it was found that among the enterepreneurial competencies, opportunity recognition competencies, marketing competencies, technical competencies, and creative competencies have a positive (+) significant effect on network activities. Among them, it was found that marketing competence has the greatest effect on network activities and technical competence has the least effect. Second, network activities were found to have a significant effect on start-up performance in a positive (+) direction. Third, among enterepreneurial competencies, opportunity recognition competence, marketing competence, technical competence, and creative competence were found to have a positive (+) effect on start-up performance. Among them, it was found that creative competence had the greatest effect and technical competence had the smallest effect. Fourth, network activities were found to mediate between enterepreneurial competencies and start-up performance. As for the relative effect size of the indirect effects of independent variables, it was found that marketing competence had the greatest effect on start-up performance and technology competence had the smallest effect. The academic implications of this study include investigating the significance and relationship of various variables, providing verification of theoretical frameworks related to entrepreneurship, identifying the main drivers of start-up success, and suggesting the importance of the network between enterepreneurial competencies and start-up performance. In addition, the practical implications of this study suggest the importance of marketing competencies for networking, and suggest differentiation of competencies. It emphasizes the strategic role of creative competence and provides guidance to policymakers for supporting start-ups on customized policies for fostering valuable start-ups.

  • PDF

Phenotypic Variation in the Breast of Live Broiler Chickens Over Time (시간에 따른 생축 육계 가슴살의 표현형 변이)

  • Ji-Won Kim;Chang-Ho Han;Seul-Gy Lee;Jun-Ho Lee;Su-Yong Jang;Jeong-Uk Eom;Kang-Jin Jeong;Jae-Cheol Jang;Hyun-Wook Kim;Han-Sul Yang;Sea-Hwan Sohn;Sang-Hyon Oh
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • This study utilized the non-invasive MyotonPRO® device to analyze the stiffness in breast muscles of commercial broilers (Ross 308 and Arbor Acres) and compared these findings with data reported for Ross 708, where Woody Breast (WB) symptoms had been previously documented. The research revealed that Ross 308 and Arbor Acres displayed relatively lower stiffness values compared to Ross 708, suggesting a lack of WB expression. These results indicate differentiation in breast muscle traits across strains and underscore the necessity for further research into factors influencing WB manifestation. The study also measured additional muscle tone characteristics such as Frequency, Decrement, Relaxation, and Creep across various growth stages (2, 4, 6, and 8 weeks), finding significant variations with pronounced severity at weeks 2 and 8. An increase in stiffness was observed as the broilers aged, pointing to potential growth-related or stress-induced changes affecting WB severity. A strong positive correlation was established between increased breast meat weight and WB severity, highlighting that heavier breast meat could exacerbate the condition. This correlation is vital for the poultry industry, suggesting that weight management could help mitigate WB effects. Moreover, the potential for genetic selection and breeding strategies to reduce WB occurrence was emphasized, which could aid in enhancing management practices in commercial poultry production. Collectively, these insights contribute to a deeper understanding of WB in broilers and propose avenues for future research and practical strategies to minimize its impact.

Impact of Industrial Property Rights and Innovation Capabilities on Performance: Focusing on Venture Firm Confirmation System (산업재산권 및 혁신역량이 성과에 미치는 영향: 벤처기업확인제도 혜택을 중심으로)

  • Yim Kwang-hyuk;Choi Sang-ok
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.4
    • /
    • pp.243-254
    • /
    • 2024
  • In recent years, as support for venture companies and performance increase, investment scale increases. To support them goverment operates venture firm confirmation system as a part of a variety of policies. Many studies suggest venture confirmation system offer the practical assistance on performance of venture companies. However, simply venture firm confirmation system affects on performance of venture companies. This study sought to develop a theoretical research model about the impact of innovation capabilities and industrial property rights on venture companies' financial performance and technological capabilities through the venture company confirmation system. The following hypotheses were tested. First, the innovation capabilities of venture companies such as development capability, manufacturing capability, marketing capability, level of cost leadership, level of high added value, degree of clarity of business model, and degree of innovation of business model have a significant impact on the venture company confirmation system. Second, the industrial property rights of venture companies, such as the number of domestic industrial property rights, foreign industrial property rights, industrial property rights in domestic applications, and industrial property rights in overseas applications, do not have a significant impact on the venture business confirmation system. Third, the benefits of the venture business confirmation system, such as promotion of technology development, advertising effects, tax benefits, securing excellent human resources, financing and investment incentives, advantageous participation in government support systems, and deregulation, are related to the financial performance of venture businesses such as sales and operating profit., net profit and technological level. Lastly, it was confirmed that, except for research and development type venture companies, innovation capabilities and industrial property rights do not have a significant impact on financial performance and technological capabilities through the venture confirmation system. The implications of this study mean that in situations where a company's innovation capabilities are lacking, the supply and demand of the venture business confirmation system is weak. Therefore, in order to improve the benefits of the venture business verification system, it is necessary to operate the venture business verification system benefits mainly for companies with high corporate capabilities. Next, it means that industrial property rights are not related to the venture business confirmation system. Therefore, there will be no need to consider industrial property rights as an important matter in the certification of the venture business verification system. Lastly, the higher the level of benefits from the venture business confirmation system, the greater the company's performance and technological capabilities. Therefore, efforts should be made to utilize the venture business verification system in a way that can improve performance or technology through the benefits of the venture business verification system.

  • PDF

The Impacts of Need for Cognitive Closure, Psychological Wellbeing, and Social Factors on Impulse Purchasing (인지폐합수요(认知闭合需要), 심리건강화사회인소대충동구매적영향(心理健康和社会因素对冲动购买的影响))

  • Lee, Myong-Han;Schellhase, Ralf;Koo, Dong-Mo;Lee, Mi-Jeong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.44-56
    • /
    • 2009
  • Impulse purchasing is defined as an immediate purchase with no pre-shopping intentions. Previous studies of impulse buying have focused primarily on factors linked to marketing mix variables, situational factors, and consumer demographics and traits. In previous studies, marketing mix variables such as product category, product type, and atmospheric factors including advertising, coupons, sales events, promotional stimuli at the point of sale, and media format have been used to evaluate product information. Some authors have also focused on situational factors surrounding the consumer. Factors such as the availability of credit card usage, time available, transportability of the products, and the presence and number of shopping companions were found to have a positive impact on impulse buying and/or impulse tendency. Research has also been conducted to evaluate the effects of individual characteristics such as the age, gender, and educational level of the consumer, as well as perceived crowding, stimulation, and the need for touch, on impulse purchasing. In summary, previous studies have found that all products can be purchased impulsively (Vohs and Faber, 2007), that situational factors affect and/or at least facilitate impulse purchasing behavior, and that various individual traits are closely linked to impulse buying. The recent introduction of new distribution channels such as home shopping channels, discount stores, and Internet stores that are open 24 hours a day increases the probability of impulse purchasing. However, previous literature has focused predominantly on situational and marketing variables and thus studies that consider critical consumer characteristics are still lacking. To fill this gap in the literature, the present study builds on this third tradition of research and focuses on individual trait variables, which have rarely been studied. More specifically, the current study investigates whether impulse buying tendency has a positive impact on impulse buying behavior, and evaluates how consumer characteristics such as the need for cognitive closure (NFCC), psychological wellbeing, and susceptibility to interpersonal influences affect the tendency of consumers towards impulse buying. The survey results reveal that while consumer affective impulsivity has a strong positive impact on impulse buying behavior, cognitive impulsivity has no impact on impulse buying behavior. Furthermore, affective impulse buying tendency is driven by sub-components of NFCC such as decisiveness and discomfort with ambiguity, psychological wellbeing constructs such as environmental control and purpose in life, and by normative and informational influences. In addition, cognitive impulse tendency is driven by sub-components of NFCC such as decisiveness, discomfort with ambiguity, and close-mindedness, and the psychological wellbeing constructs of environmental control, as well as normative and informational influences. The present study has significant theoretical implications. First, affective impulsivity has a strong impact on impulse purchase behavior. Previous studies based on affectivity and flow theories proposed that low to moderate levels of impulsivity are driven by reduced self-control or a failure of self-regulatory mechanisms. The present study confirms the above proposition. Second, the present study also contributes to the literature by confirming that impulse buying tendency can be viewed as a two-dimensional concept with both affective and cognitive dimensions, and illustrates that impulse purchase behavior is explained mainly by affective impulsivity, not by cognitive impulsivity. Third, the current study accommodates new constructs such as psychological wellbeing and NFCC as potential influencing factors in the research model, thereby contributing to the existing literature. Fourth, by incorporating multi-dimensional concepts such as psychological wellbeing and NFCC, more diverse aspects of consumer information processing can be evaluated. Fifth, the current study also extends the existing literature by confirming the two competing routes of normative and informational influences. Normative influence occurs when individuals conform to the expectations of others or to enhance his/her self-image. Whereas informational influence occurs when individuals search for information from knowledgeable others or making inferences based upon observations of the behavior of others. The present study shows that these two competing routes of social influence can be attributed to different sources of influence power. The current study also has many practical implications. First, it suggests that people with affective impulsivity may be primary targets to whom companies should pay closer attention. Cultivating a more amenable and mood-elevating shopping environment will appeal to this segment. Second, the present results demonstrate that NFCC is closely related to the cognitive dimension of impulsivity. These people are driven by careless thoughts, not by feelings or excitement. Rational advertising at the point of purchase will attract these customers. Third, people susceptible to normative influences are another potential target market. Retailers and manufacturers could appeal to this segment by advertising their products and/or services as products that can be used to identify with or conform to the expectations of others in the aspiration group. However, retailers should avoid targeting people susceptible to informational influences as a segment market. These people are engaged in an extensive information search relevant to their purchase, and therefore more elaborate, long-term rational advertising messages, which can be internalized into these consumers' thought processes, will appeal to this segment. The current findings should be interpreted with caution for several reasons. The study used a small convenience sample, and only investigated behavior in two dimensions. Accordingly, future studies should incorporate a sample with more diverse characteristics and measure different aspects of behavior. Future studies should also investigate personality traits closely related to affectivity theories. Trait variables such as sensory curiosity, interpersonal curiosity, and atmospheric responsiveness are interesting areas for future investigation.

  • PDF

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

The Effects on CRM Performance and Relationship Quality of Successful Elements in the Establishment of Customer Relationship Management: Focused on Marketing Approach (CRM구축과정에서 마케팅요인이 관계품질과 CRM성과에 미치는 영향)

  • Jang, Hyeong-Yu
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.119-155
    • /
    • 2008
  • Customer Relationship Management(CRM) has been a sustainable competitive edge of many companies. CRM analyzes customer data for designing and executing targeted marketing analysing customer behavior in order to make decisions relating to products and services including management information system. It is critical for companies to get and maintain profitable customers. How to manage relationships with customers effectively has become an important issue for both academicians and practitioners in recent years. However, the existing academic literature and the practical applications of customer relationship management(CRM) strategies have been focused on the technical process and organizational structure about the implementation of CRM. These limited focus on CRM lead to the result of numerous reports of failed implementations of various types of CRM projects. Many of these failures are also related to the absence of marketing approach. Identifying successful factors and outcomes focused on marketing concept before introducing a CRM project are a pre-implementation requirements. Many researchers have attempted to find the factors that contribute to the success of CRM. However, these research have some limitations in terms of marketing approach without explaining how the marketing based factors contribute to the CRM success. An understanding of how to manage relationship with crucial customers effectively based marketing approach has become an important topic for both academicians and practitioners. However, the existing papers did not provide a clear antecedent and outcomes factors focused on marketing approach. This paper attempt to validate whether or not such various marketing factors would impact on relational quality and CRM performance in terms of marketing oriented perceptivity. More specifically, marketing oriented factors involving market orientation, customer orientation, customer information orientation, and core customer orientation can influence relationship quality(satisfaction and trust) and CRM outcome(customer retention and customer share). Another major goals of this research are to identify the effect of relationship quality on CRM outcomes consisted of customer retention and share to show the relationship strength between two factors. Based on meta analysis for conventional studies, I can construct the following research model. An empirical study was undertaken to test the hypotheses with data from various companies. Multiple regression analysis and t-test were employed to test the hypotheses. The reliability and validity of our measurements were tested by using Cronbach's alpha coefficient and principal factor analysis respectively, and seven hypotheses were tested through performing correlation test and multiple regression analysis. The first key outcome is a theoretically and empirically sound CRM factors(marketing orientation, customer orientation, customer information orientation, and core customer orientation.) in the perceptive of marketing. The intensification of ${\beta}$coefficient among antecedents factors in terms of marketing was not same. In particular, The effects on customer trust of marketing based CRM antecedents were significantly confirmed excluding core customer orientation. It was notable that the direct effects of core customer orientation on customer trust were not exist. This means that customer trust which is firmly formed by long term tasks will not be directly linked to the core customer orientation. the enduring management concerned with this interactions is probably more important for the successful implementation of CRM. The second key result is that the implementation and operation of successful CRM process in terms of marketing approach have a strong positive association with both relationship quality(customer trust/customer satisfaction) and CRM performance(customer retention and customer possession). The final key fact that relationship quality has a strong positive effect on customer retention and customer share confirms that improvements in customer satisfaction and trust improve accessibility to customers, provide more consistent service and ensure value-for-money within the front office which result in growth of customer retention and customer share. Particularly, customer satisfaction and trust which is main components of relationship quality are found to be positively related to the customer retention and customer share. Interactive managements of these main variables play key roles in connecting the successful antecedent of CRM with final outcome involving customer retention and share. Based on research results, This paper suggest managerial implications concerned with constructions and executions of CRM focusing on the marketing perceptivity. I can conclude in general the CRM can be achieved by the recognition of antecedents and outcomes based on marketing concept. The implementation of marketing concept oriented CRM will be connected with finding out about customers' purchasing habits, opinions and preferences profiling individuals and groups to market more effectively and increase sales changing the way you operate to improve customer service and marketing. Benefiting from CRM is not just a question of investing the right software, but adapt CRM users to the concept of marketing including marketing orientation, customer orientation, and customer information orientation. No one deny that CRM is a process or methodology used to develop stronger relationships being composed of many technological components, but thinking about CRM in primarily technological terms is a big mistake. We can infer from this paper that the more useful way to think and implement about CRM is as a process that will help bring together lots of pieces of marketing concept about customers, marketing effectiveness, and market trends. Finally, a real situation we conducted our research may enable academics and practitioners to understand the antecedents and outcomes in the perceptive of marketing more clearly.

  • PDF

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

An Empirical Study on Motivation Factors and Reward Structure for User's Createve Contents Generation: Focusing on the Mediating Effect of Commitment (창의적인 UCC 제작에 영향을 미치는 동기 및 보상 체계에 대한 연구: 몰입에 매개 효과를 중심으로)

  • Kim, Jin-Woo;Yang, Seung-Hwa;Lim, Seong-Taek;Lee, In-Seong
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.141-170
    • /
    • 2010
  • User created content (UCC) is created and shared by common users on line. From the user's perspective, the increase of UCCs has led to an expansion of alternative means of communications, while from the business perspective UCCs have formed an environment in which an abundant amount of new contents can be produced. Despite outward quantitative growth, however, many aspects of UCCs do not meet the expectations of general users in terms of quality, and this can be observed through pirated contents and user-copied contents. The purpose of this research is to investigate effective methods for fostering production of creative user-generated content. This study proposes two core elements, namely, reward and motivation, which are believed to enhance content creativity as well as the mediating factor and users' committement, which will be effective for bridging the increasing motivation and content creativity. Based on this perspective, this research takes an in-depth look at issues related to constructing the dimensions of reward and motivation in UCC services for creative content product, which are identified in three phases. First, three dimensions of rewards have been proposed: task dimension, social dimension, and organizational dimention. The task dimension rewards are related to the inherent characteristics of a task such as writing blog articles and pasting photos. Four concrete ways of providing task-related rewards in UCC environments are suggested in this study, which include skill variety, task significance, task identity, and autonomy. The social dimensioni rewards are related to the connected relationships among users. The organizational dimension consists of monetary payoff and recognition from others. Second, the two types of motivations are suggested to be affected by the diverse rewards schemes: intrinsic motivation and extrinsic motivation. Intrinsic motivation occurs when people create new UCC contents for its' own sake, whereas extrinsic motivation occurs when people create new contents for other purposes such as fame and money. Third, commitments are suggested to work as important mediating variables between motivation and content creativity. We believe commitments are especially important in online environments because they have been found to exert stronger impacts on the Internet users than other relevant factors do. Two types of commitments are suggested in this study: emotional commitment and continuity commitment. Finally, content creativity is proposed as the final dependent variable in this study. We provide a systematic method to measure the creativity of UCC content based on the prior studies in creativity measurement. The method includes expert evaluation of blog pages posted by the Internet users. In order to test the theoretical model of our study, 133 active blog users were recruited to participate in a group discussion as well as a survey. They were asked to fill out a questionnaire on their commitment, motivation and rewards of creating UCC contents. At the same time, their creativity was measured by independent experts using Torrance Tests of Creative Thinking. Finally, two independent users visited the study participants' blog pages and evaluated their content creativity using the Creative Products Semantic Scale. All the data were compiled and analyzed through structural equation modeling. We first conducted a confirmatory factor analysis to validate the measurement model of our research. It was found that measures used in our study satisfied the requirement of reliability, convergent validity as well as discriminant validity. Given the fact that our measurement model is valid and reliable, we proceeded to conduct a structural model analysis. The results indicated that all the variables in our model had higher than necessary explanatory powers in terms of R-square values. The study results identified several important reward shemes. First of all, skill variety, task importance, task identity, and automony were all found to have significant influences on the intrinsic motivation of creating UCC contents. Also, the relationship with other users was found to have strong influences upon both intrinsic and extrinsic motivation. Finally, the opportunity to get recognition for their UCC work was found to have a significant impact on the extrinsic motivation of UCC users. However, different from our expectation, monetary compensation was found not to have a significant impact on the extrinsic motivation. It was also found that commitment was an important mediating factor in UCC environment between motivation and content creativity. A more fully mediating model was found to have the highest explanation power compared to no-mediation or partially mediated models. This paper ends with implications of the study results. First, from the theoretical perspective this study proposes and empirically validates the commitment as an important mediating factor between motivation and content creativity. This result reflects the characteristics of online environment in which the UCC creation activities occur voluntarily. Second, from the practical perspective this study proposes several concrete reward factors that are germane to the UCC environment, and their effectiveness to the content creativity is estimated. In addition to the quantitive results of relative importance of the reward factrs, this study also proposes concrete ways to provide the rewards in the UCC environment based on the FGI data that are collected after our participants finish asnwering survey questions. Finally, from the methodological perspective, this study suggests and implements a way to measure the UCC content creativity independently from the content generators' creativity, which can be used later by future research on UCC creativity. In sum, this study proposes and validates important reward features and their relations to the motivation, commitment, and the content creativity in UCC environment, which is believed to be one of the most important factors for the success of UCC and Web 2.0. As such, this study can provide significant theoretical as well as practical bases for fostering creativity in UCC contents.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.