• Title/Summary/Keyword: PrOx

Search Result 11, Processing Time 0.032 seconds

Highly dispersed $Ru/{\alpha}-Al_2O_3$ Catalyst development for selective CO oxidation reaction (선택적 CO 산화반응을 위한 고분산된 $Ru/{\alpha}-Al_2O_3$ 촉매개발)

  • Eom, HyunJi;Koo, KeeYoung;Jung, UnHo;Rhee, YoungWoo;Yoon, WangLai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.228.1-228.1
    • /
    • 2010
  • 선택적 CO 산화반응(PrOx)을 위한 Ru이 고분산 담지된 $Ru/{\alpha}-Al_2O_3$ 촉매를 증착-침전법(deposition-precipitation)으로 제조하였다. 용액의 pH와 aging 시간에 따른 Ru 입자의 크기 변화와 분산도의 영향을 살펴보았으며 함침법(impregnation)으로 비교 촉매를 제조하였다. 촉매의 특성분석은 BET, TPR, CO-Chemisorption분석을 수행하여 촉매의 비표면적, 환원특성, 분산도를 알 수 있었다. 특성분석결과, 증착-침전법으로 제조한 $Ru/{\alpha}-Al_2O_3$ 촉매가 함침법으로 제조한 촉매에 비해 분산도가 높았으며, pH별 촉매 제조에서는 pH6.5로 제조한 촉매가 22.06%로 가장 높은 분산도를 보였다. 또한, 담체의 비표면적 영향에 따른 Ru 입자의 분산도를 살펴보기 위해 ${\gamma}-Al_2O_3$${\alpha}-Al_2O_3$ 담체를 적용한 결과, 비표면적이 작은 ${\alpha}-Al_2O_3$ 담체 표면에서 Ru 분산도가 ${\gamma}-Al_2O_3$ 담체에 비해 높았다. 이는 기공이 발달하여 비표면적이 넓은 ${\gamma}-Al_2O_3$ 담체는 소량의 Ru을 고분산 담지 시 담체 표면보다는 기공 내에 담지 되는 양이 많아 실제 반응 시 반응에 참여하는 표면 활성 금속양이 적음을 알 수 있다. 특히, 선택적 산화반응과 같이 표면에서 빠른 반응이 일어나는 경우, 기공 내부의 활성금속이 반응에 참여하기 어려워 반응 활성이 낮음을 PrOx 반응실험을 통해 확인할 수 있었다. PrOx test 조건은 GHSV 250000~60000, 온도는 80~200도, 람다값은 2~4로 성능 비교하여 실험 하였다. PrOx의 성능평가 결과 담체를 ${\alpha}-Al_2O_3$를 사용하여 deposition-precipitation방법으로 제조한 pH6.5 촉매에서 $100{\sim}160^{\circ}C$에서 90%의 가장 높은 CO conversion을 가지고 18%의 선택도를 가졌다.

  • PDF

Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrOx insulator layer

  • Noda, Minoru;Kodama, Kazushi;Kitai, Satoshi;Takahashi, Mitsue;Kanashima, Takeshi;Okuyama, Masanori
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.1-64
    • /
    • 2003
  • A metal-ferroelectric [SrBi$_2$Ta$_2$O$\_$9/ (SBT)-high-k-insulator(PrOx)-semiconductor(Si) structure has been fabricated and evaluated as a key part of metal-ferroelectric-insulator-semiconductor-field-effect-transistor MFIS-FET memory, aiming to improve the memory retention characteristics by increasing the dielectric constant in the insulator layer and suppressing the depolarization field in the SBT layer. A 20-nm PrOx film grown on Si(100) showed both a high of about 12 and a low leakage current density of less than 1${\times}$ 10e-8 A/$\textrm{cm}^2$ at 105 MV/cm. A 400-nm SBT film prepared on PrOx/Si shows a preferentially oriented (105) crystalline structure, grain size of about 130 nm and subface roughness of 3.2 nm. A capacitance-voltage hysteresis is confirmed on the Pt/SBT/PrOx/Si diode with a memory window of 0.3V at a sweep voltage width of 12 V. The memory retention time was about 1 104s, comparable to the conventional Pt/SBT/SiO$\_$x/N$\_$y/(SiO$\_$N/)/Si. The gradual change of the capacitance indicates that some memory degradation mechanism is different from that in the Pt/SBT/SiON/Si structure.

  • PDF

A Study on Highly Dispersed Pt/$Al2O_3$ Catalyst for Preferential CO Oxidation (고분산 담지된 Pt/$Al2O_3$ 촉매의 선택적 CO 산화반응 특성에 관한 연구)

  • Kim, Ki Hyeok;Koo, Kee Young;Jung, UnHo;Roh, Hyeon Seog;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.157.1-157.1
    • /
    • 2011
  • 선택적 CO 산화반응(PrOx)에 사용되는 촉매 중 Pt, Ru, Rh 등의 귀금속 계 촉매들은 비귀금속 계 촉매에 비해 활성이 좋은 반면 가격이 비싸다는 경제적인 제한점이 있다. 따라서 소량의 귀금속을 사용하여 높은 활성의 촉매를 제조하고자 활성금속의 고분산 담지 방법에 대한 연구가 이루어지고 있다. 본 연구에서는 담체인 ${\gamma}-Al_2O_3$ 표면에 활성금속인 Pt의 고분산 담지를 위해 증착-침전법(Deposition-precipitation)을 적용하였으며 용액의 pH 변화에 따른 Pt 금속 입자의 분산도에 대한 영향을 살펴보았다. Pt의 함량은 1wt%로 고정하였고 침전제로 NaOH를 사용하여 용액의 pH를 pH 7.5 ~ 10.5로 변화시켰다. 제조된 촉매는 세척 후 $400^{\circ}C$, 3시간 소성 하였다. 제조된 1wt% Pt/$Al_2O_3$ 촉매의 특성분석을 위해 BET, TPR, CO-chemisorption을 수행하였다. PrOx 반응 실험은 GHSV=60,000 $ml/g_{cat}{\cdot}h$, $T=100{\sim}200^{\circ}C$, ${\lambda}$=4 조건에서 수행되었으며 반응 전에 촉매는 $400^{\circ}C$, 3시간 환원 후 사용하였다. 촉매의 특성분석과 PrOx 반응 실험 결과를 통해 촉매가 담체 위에 고분산 되는 최적의 pH를 확인할 수 있었으며, 기존의 함침법으로 제조된 촉매와 성능 비교를 통해 제조방법에 따른 영향을 살펴보았다.

  • PDF

The performance evaluation for H2 reforming of the plate type hydrogen generation system (평판형 수소생산시스템의 수소개질 성능평가)

  • Heo, Su-Bin;Yun, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • Hydrogen energy, a field of low-carbon substitute energy, can be produced by fossile fuel reforming and electrolysis of water etc. We developed 1kW class flat type reformer for PEM Fuel Cells. The PEMFC is highly sensitive to carbon monoxide because CO has detrimental effects on the performance of the fuel cell. Thus, reformed gas supplied to Fuel cell system, which maintained CO concentration below 10ppm. After applying optimum drive condition, reformed gas was measured with gas chromatography and could find out about each experimental condition of $H_2$ and CO concentration. As a results, The 1kW class plate type hydrogen generation system's optimum condition is A/F ratio ${\alpha}=1.3$, STR temperature 1023K, S/C ratio 3, and $PrOx1{\cdot}2$ 30cc/min. It turns out that installation of PrOx 2 stage is more efficient for reducing CO concentration.

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

A Genetic Algorithm for the Traveling Salesman Problem Using Prufer Number (Prufer 수를 이용한 외판원문제의 유전해법)

  • 이재승;신해웅;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.41
    • /
    • pp.1-14
    • /
    • 1997
  • This study proposes a genetic algorithm using Pr(equation omitted)fer number for the traveling salesman problem(PNGATSP). Nearest neighbor nodes are mixed with randomly selected nodes at the stage of generating initial solutions. Proposed PNGATSP adopts a few ideas which are different from traditional genetic algorithms. For instance, an exponential fitness function and elitism are used and Pr(equation omitted)fer number is used for encoding TSP. Genetic operators are selected by experiments, which make a good solution among four combinations of conventional genetic operators and new genetic operators. For respective combinations, robust set of parameters is determined by the experimental designing approach. The feature of Pr(equation omitted)fer number code for TSP and the search power of GA using Pr(equation omitted)fer number is analysed. The best is a combination of OX(order crossover) and swap, which is superior to the other experimented combinations of genetic operators by 1.0%∼12.8% deviation.

  • PDF

Preferential CO Oxidation over Ce-Promoted Pt/γ-Al2O3 Catalyst (Ce가 첨가된 Pt/γ-Al2O3 촉매의 선택적 CO 산화반응 특성)

  • Kim, Kihyeok;Koo, Keeyoung;Jung, Unho;Yoon, Wanglai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.640-646
    • /
    • 2012
  • The effect of Ce promotion over 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts on the CO conversion and $CO_2$ selectivity was investigated in preferential CO oxidation (PrOx) to reduce the CO concentration less than 10 ppm in excess $H_2$ stream for polymer electrolyte membrane fuel cell (PEMFC). Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts were prepared by incipient wetness impregnation method and the loading amount of Pt was fixed at 1wt%. The content of Ce promoter which has excellent oxygen storage and transfer capability due to the redox property was adjusted from 0 to 1.5wt%. Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts exhibit high CO conversion and $CO_2$ selectivity at low temperatures below $150^{\circ}C$ due to the improvement of reducibility of surface PtOx species compared with the 1wt% $Pt/{\gamma}-Al_2O_3$ catalyst without Ce addition. When Ce content was more than 1wt%, the catalytic activity was decreased at over $160^{\circ}C$ in PrOx because of competitive $H_2$ oxidation. As a result, 0.5wt% Ce is optimal content not only to achieve high catalytic activity and good stability at low temperatures below $150^{\circ}C$ in the presence of $CO_2$ and $H_2O$ but also to minimize the $H_2$ oxidation at high temperatures.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

The development of High efficiency fuel processor for technical independence 5kW class fuel cell system (기술자립형 5kW 연료전지 시스템 구축을 위한 고효율 연료변환기 개발)

  • Lee, Soojae;Choi, Daehyun;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.123.2-123.2
    • /
    • 2010
  • Fuel Cell cogeneration system is a promising technology for generating electricity and heat with high efficiency of low pollutant emission. We have been developed 5kW class fuel cell cogeneration system for commercial and residential application. The fuel processor is a crucial part of producing hydrogen from the fossil fuels such as LNG and LPG. The 5kW class high efficiency fuel processor consists of steam reformer, CO shift converter, CO preferential oxidation(PrOx) reactor, burner and heat exchanger. The one-stage CO shift converter process using a metal oxide catalyst was adopted. The efficiency of 5 kW class fuel processor shows 75% based on LHV. In addition, for the purpose of continuous operation with load fluctuations in the commercial system for residential use, load change of fuel processor was tested. Efficiency of 30%, 50%, 70% and 100% load shows 75%, 75%, 73% and 72%(LHV), respectively. Also, during the load change conditions, the product gas composition was stable and the outlet CO concentration was below 5 ppm. The Fuel processor operation was carried out in residential fuel cell cogeneration system with fuel cell stack under dynamic conditions. The 5kW class fuel processor have been evaluated for long-term durability and reliability test including with improvement in optimal operation logic.

  • PDF