• Title/Summary/Keyword: Power tracking

Search Result 1,433, Processing Time 0.027 seconds

Localization Development of Axial Fan for KM-SAM Multi-function radar (KM-SAM 다기능레이더용 축류형 송풍기 국산화 개발)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Seo, Dae-Sue
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • This paper describes the localization development of an axial fan for KM-SAM multi-function radar. The multi-function radar, which is constantly affected by the external environment, is a key instrument for detecting and tracking low and medium altitude threat targets. Operating this equipment smoothly requires a fan for controlling the internal temperature and humidity. Presently, all such fans are imported. To solve these problems, localization development research was proposed. The development of localization includes analysis of requirements through review of related technical reports such as original equipment and system equipment specification, prototype design, and verification of design requirement through performance test and environmental test. The study results are described. The blower consisted of an axial fan with guide vanes and the motor was designed to generate a maximum airflow of 970 CFM and a wind pressure of 4.8 IWG. Six prototypes were manufactured for performance evaluation. In addition, for reliable data acquisition, AC power supply, fan performance tester and data acquisition equipment were designed and tested. All prototypes were verified as having design requirements equal to or better than those of imports.

Deisgn of adaptive array antenna for tracking the source of maximum power and its application to CDMA mobile communication (최대 고유치 문제의 해를 이용한 적응 안테나 어레이와 CDMA 이동통신에의 응용)

  • 오정호;윤동운;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2594-2603
    • /
    • 1997
  • A novel method of adaptive beam forming is presented in this paper. The proposed technique provides for a suboptimal beam pattern that increases the Signal to Noise/Interference Ratio (SNR/SIR), thus, eventually increases the capacity of the communication channel, under an assumption that the desired signal is dominant compared to each component of interferences at the receiver, which is precoditionally achieved in Code Division Multiple Access (CDMA) mobile communications by the chip correlator. The main advantages of the new technique are:(1)The procedure requires neither reference signals nor training period, (2)The signal interchoerency does not affect the performance or complexity of the entire procedure, (3)The number of antennas does not have to be greater than that of the signals of distinct arrival angles, (4)The entire procedure is iterative such that a new suboptimal beam pattern be generated upon the arrival of each new data of which the arrival angle keeps changing due tot he mobility of the signal source, (5)The total amount of computation is tremendously reduced compared to that of most conventional beam forming techniques such that the suboptimal beam pattern be produced at vevery snapshot on a real-time basis. The total computational load for generating a new set of weitht including the update of an N-by-N(N is the number of antenna elements) autocovariance matrix is $0(3N^2 + 12N)$. It can further be reduced down to O(11N) by approximating the matrix with the instantaneous signal vector.

  • PDF

Infrared-based User Location Tracking System for Indoor Environments (적외선 기반 실내 사용자 위치 추적 시스템)

  • Jung, Seok-Min;Jung, Woo-Jin;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.9-20
    • /
    • 2005
  • In this paper, we propose ubiTrack, a system which tracks users' location in indoor environments by employing infrared-based proximity method. Most of recently developed systems have focussed on performance and accuracy. For this reason, they adopted the idea of centralized management, which gathers all information in a main system to monitor users' location. However, these systems raise privacy concerns in ubiquitous computing environments where tons of sensors are seamlessly embedded into environments. In addition, centralized systems also need high computational power to support multiple users. The proposed ubiTrack is designed as a passive mobile architecture to relax privacy problems. Moreover, ubiTrack utilizes appropriate area as a unit to efficiently track users. To achieve this, ubiTrack overlaps each sensing area by utilizing the TDM (Time-Division Multiplexing) method. Additionally, ubiTrack exploits various filtering methods at each receiver and utilization module. The filtering methods minimize unexpected noise effect caused by external shock or intensity weakness of ID signal at the boundary of sensing area. ubiTrack can be applied not only to location-based applications but also to context-aware applications because of its associated module. This module is a part of middleware to support communication between heterogeneous applications or sensors in ubiquitous computing environments.

Dynamic-Response-Free SMPS Using a New High-Resolution DPWM Generator Based on Switched-Capacitor Delay Technique (Switched-Capacitor 지연 기법의 새로운 고해상도 DPWM 발생기를 이용한 Dynamic-Response-Free SMPS)

  • Lim, Ji-Hoon;Park, Young-Kyun;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • In this paper, we suggest the dynamic-response-free SMPS using a new high-resolution DPWM generator based on switched-capacitor delay technique. In the proposed system, duty ratio of DPWM is controlled by voltage slope of an internal capacitor using switched-capacitor delay technique. In the proposed circuit, it is possible to track output voltage by controlling current of the internal capacitor of the DPWM generator through comparison between the feedback voltage and the reference voltage. Therefore the proposed circuit is not restricted by the dynamic-response characteristic which is a problem in the existing SMPS using the closed-loop control method. In addition, it has great advantage that ringing phenomenon due to overshoot/undershoot does not appear on output voltage. The proposed circuit can operate at switching frequencies of 1MHz~10MHz using internal operating frequency of 100 MHz. The maximum current of the core circuit is 2.7 mA and the total current of the entire circuit including output buffer is 15 mA at the switching frequency of 10 MHz. The proposed circuit has DPWM duty ratio resolution of 0.125 %. It can accommodate load current up to 1 A. The maximum ripple of output voltage is 8 mV. To verify operation of the proposed circuit, we carried out simulation with Dongbu Hitek BCD $0.35{\mu}m$ technology parameter.

Performance Analysis of Interference Cancellation Algorithms for an FM Based PCL System (FM 신호 기반 PCL 시스템에서 간섭 신호 제거 알고리즘의 성능 분석)

  • Park, Geun-Ho;Kim, Dong-Gyu;Kim, Ho Jae;Park, Jin-Oh;Lee, Won-Jin;Ko, Jae Heon;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.819-830
    • /
    • 2017
  • An FM radio based PCL system is a passive radar technique for detecting the multiple moving targets from FM radio signals and tracking the trajectories of the targets by calculating the cross-correlation function of direct-path signal and target echo signals. However, the interference signals are received from a surveillance channel, which is designed to receive the target echo signals. Because of this problem, the target echo signals are masked by the strong interference signals and this makes it difficult to detect the true targets from the cross-correlation function. Adaptive filters are known as effective methods for suppressing the interference signals but there is a problem to present their accurate performances in the PCL system because many literatures used the cross-correlation function and the ratio of input and output power as a measure of the performance analysis. In this paper, a performance analysis method is proposed to evaluate the performance of interference cancellation algorithms. By using the property that each component of the filter weight vector is adjusted to suppress the specific interference signal, a performance measure of the interference signal suppression is defined by a function of adaptive filter weights. Based on the proposed method, we compare the performance of the adaptive filters used in the PCL system. Simulation results show that the proposed method can be very effective for evaluating the performance of interference cancellation algorithms.

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

An Enhanced Frequency Synchronization Algorithm for 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향 링크 수신기를 위한 개선된 주파수 동기 알고리즘)

  • Shim, Myung-Jun;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.103-112
    • /
    • 2010
  • In this paper, we propose a coarse and fine frequency synchronization method which is suitable for the 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) FDD(Frequency Division Duplexing) / TDD(Time Division Duplexing) dual mode system. In general, PSS(Primary Synchronization Signal) correlation based estimation method and CP(Cyclic Prefix) correlation based tracking loop are applied for coarse and fine frequency synchronization in 3GPP LTE OFDMA(Orthogonal Frequency Division Multiple Access) system, respectively. However, the conventional coarse frequency synchronization method has performance degradation caused by fading channel and squaring loss. Also, the conventional fine frequency synchronization method cannot guarantee stable operation in TDD mode because of signal power difference between uplink and downlink subframe. Therefore, in this paper, we propose enhanced coarse and fine frequency synchronization methods which can estimate more accurately in multi-path fading channel and high speed channel environments and has stable operation for TDD frame structure, respectively. By computer simulation, we show that the proposed methods outperform the conventional methods, and verify that the proposed frequency synchronization method can guarantee stable operation in 3GPP LTE FDD/TDD dual mode downlink receiver.

A Study on Estimation of a Beat Spectrum in a FMCW Radar (FMCW 레이다에서의 비트 스펙트럼 추정에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2511-2517
    • /
    • 2009
  • Recently, a FMCW radar is used for the various purposes in the short range detection and tracking of targets. The main advantages of a FMCWradar are the comparative simplicity of implementation and the low peak power transmission characterizing the very low probability of signal interception. Since it uses the frequency modulated continuous wave for transmission and demodulation, the received beat frequency represents the range and Doppler information of targets. Detection and extraction of useful information from targets are performed in this beat frequency domain. Therefore, the resolution and accuracy in the estimation of a beat spectrum are very important. However, using the conventional FFT estimation method, the high resolution spectrum estimation with a low sidelobe level is not possible if the acquisition time is very short in receiving target echoes. This kind of problems deteriorates the detection performance of adjacent targets having the large magnitude differences in return echoes and also degrades the reliability of the extracted information. Therefore, in this paper, the model parameter estimation methods such as autoregressive and eigenvector spectrum estimation are applied to mitigate these problems. Also, simulation results are compared and analyzed for further improvement.

Changes in the Energy Landscape from Multi-Level Perspective: A Case Study of the Photovoltaic Module Carbon Certification System (다층적 관점에서 바라본 에너지경관의 변동: 태양광 모듈 탄소인증제를 사례로)

  • Jang, Geunyong
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.367-385
    • /
    • 2021
  • This study examined changes in the energy landscape, focusing on the photovoltaic module carbon certification system. As the global photovoltaic market has been reorganized around Chinese companies, the South Korean government has pushed to strengthen the competitiveness of the nation's photovoltaic industry. However, a limitation remains in that the government-led effort was not sufficient to bring about dynamic changes in the energy landscape. Against this backdrop, this study explored the stages leading to the multi-level perspectives of "macro-environment, socio-technical regime, and niche" to track the process of the government and domestic photovoltaic companies as part of a socio-technical regime responding to global market changes. In particular, this study raised an issue with the conceptual discussion of multi-level perspective, which placed a particular emphasis on the rate of change at each level and the niche in which innovative experiments take place, and thus attempted to fill this gap by tracking the energy landscape that varies differently from space. These spatial discussions can track different carbon emissions coefficients and industrial characteristics for each country, and have a higher level of explanatory power for the system thus constructed. In addition, through discussions on the problems and implications of the government-led introduction of renewable energy policies, this study suggests the need to create and implement a field-oriented system.

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.