• Title/Summary/Keyword: Power tower

Search Result 401, Processing Time 0.054 seconds

The performance evaluation of the polymer arm insulator for a compact transmission line tower (친환경적인 컴팩트 송전탑용 폴리머 절연암의 성능평가에 관한 연구)

  • Song, Hong-Jun;Park, Gi-Ho;Kim, Gwan-Hyung;Byun, Gi-Sik;Hwang, Yeong-Yeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.341-347
    • /
    • 2009
  • As a right-of-way security for the high power transmission line tower construction is becoming more and more difficult, the friendly environmental compact tower design is required. For a proper insulation for the compact tower, the polymer material are being tried. Some countries has already adapted, in the various polymer application and management data, polymer arm insulator to the transmission tower, and shown a stable operation. However, in our country, the polymer arm insulator has left much to be desired in the installation on the transmission line tower. But polymer material has been developed by high strength and technology and is expected to be used in various electric equipments. The polymer arm insulator is a one of good electric insulation materials to expand the power supply capacity in the rapid power demand increasement In this research, the new polymer am insulator is designed and its electric specifications are analyzed. Its mechanical specifications is verified through the field test on the compact tower which is modified by the polymer arm insulator.

Thermal Performance Characteristics of Closed-Wet Cooling Tower (밀폐형 냉각탑의 열성능 특성에 관한 실험적 연구)

  • Sarker, M.M.A.;Kim, E.P.;Moon, C.G.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.88-92
    • /
    • 2005
  • The experiment of thermal performance about closed-wet cooling tower was conducted in this study. A closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from the top of the heat exchanger to the bottom side in the inner part of the tube, and spray water flows in the gravitational direction in the outer side. Air comes in direct contact with the spray water at the outer side of the tube while passing from the lower the upper part having a counterflow to the spray water. The heat transfer pipe used in this experiment is a bare-type tube having an outer diameter of 15.88mm. The heat exchanger is consisted of seven rows and fifteen columns. In this experiment, thermal performance of the cooling tower is derived from overall heat transfer coefficients between the process fluid and sprayed water and volumetric overall mass transfer coefficient between sprayed water and air.

  • PDF

A Study on the Voltage Upgrading of Transmission Lines using Polymer Insulation Arm (폴리머 절연암을 이용한 송전선로 전압 승압에 관한 연구)

  • Lee, Won-Kyo;Lee, Jung-Won;Kang, Yeon-Woog;Lee, Dong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.870-878
    • /
    • 2009
  • The large increase in the use of electricity has resulted in an ever-growing electric power demand. It has created the need for the construction of power transmission facility located close to the load centers and it also has to require wide right-of-way and large lots, that are not always available, for especially the installation of the towers. The difficulties in acquiring right-of-way have put pressure on energy companies to either upgrade a line on an existing right-of-way to higher voltage or build a new line on a narrow right-of-way. This paper presents the design of a compact tower with polymer Insulation arm, in order to reduce the separation between phases. the compact tower can be built on a narrow right-of-way. the compact tower can be designed based on 345 kV Tower regarding electrical clearances and right of way, therefore the conventional 154 kV Tower can be upgrading transmission line voltages have moved to 345 kV levels.

Development of Onshore Offshore Tower Elevator with load distribution endless winder and integrated control panel (하중 분산형 엔드리스 와인더와 통합형 제어반을 적용한 육상 해상 풍력타워 승강기 개발)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.711-719
    • /
    • 2019
  • At present, wind power is the fastest growing technology in the world. The domestic market depends heavily on imports for wind tower lift. so it manage through the overseas maker. The lift manufacture, establishment and maintenance utility is increasing, localization development of one wind tower lift is necessary with domestic fundamental base technique. In this paper, we will study the components necessary for the development of onshore offshore wind tower elevators, which are currently dependent on total imports, in line with the high growth of the wind market and the enlargement of the wind power generators. First of all, endless winders and cabins, which are the core components of the offshore wind tower lift, were examined for the components that affect the structural safety. Structural analysis was performed on Sheave, which is responsible for most of the lift lifting loads, and Block Stop, a safety device that prevents the cabin from falling in an emergency. The structural suitability was evaluated by comparing with the safety factor. In addition, the on-board control panel combines the control panel of the elevator and the drive motor driving the endless winder for efficient control of the offshore wind tower lift. The addition of features improves ride comfort at departure.

The design and the full load test results of 765kV tower foundation (765kV 철탑기초 설계 및 기초재하시험)

  • Kim, J.B.;Cho, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.447-449
    • /
    • 1995
  • In terms of a new development on the foundation design of 765kV tower and its applications, a revolutionary turning point comes out through this study in approaching the new concept, what we call "Rock anchor" "Deep foundation" to tower foundation which was officially approved by the full load test. this contents is described of the foundation design and the results of full load test for two types foundation.

  • PDF

Introduction of the Design Standard of Tower for Overhead Transmission Line in KEPCO (가공송전용 철탑설계기준(안) 소개 및 주요내용 해설)

  • Kim, K.H.;Woo, J.W.;Shim, E.B.;Shin, T.W.;You, C.H.;Bang, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.351-353
    • /
    • 2002
  • Up to now the design standard of tower for overhead transmission line in KEPCO was revised four times since 1970. During last year. we had reviewed this design standard. This paper shows the design standard of tower for overhead transmission line in KEPCO. In this standard, a kind of tower was defined as standard tower and special tower. Also we had defined usage range of standard tower, tower height, arrangement of power line, design condition of tower arm and etc. On the wind pressure, we had defined basic velocity pressure per region and maximum wind pressure. For special region, design wind pressure will be considered the receded wind velocity of meteorological observatory and regional condition by this standard.

  • PDF

CFD Analysis on a Tall Building Augmented Wind Turbine (풍력발전기가 설치된 고층빌딩에 대한 전산유체역학적 고찰)

  • Jeon, Wan-Ho;Yoon, Seong-Wook;Kim, Wook;Cho, Jang-Hyung
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.919-926
    • /
    • 2009
  • Renewable energy or green energy is a hot issue in theses days. Since wind resource can be endlessly supplied by nature, researchers and common people are interested in study how to use that resource at home or company. Especially, many architects have tried to integrate wind power generator for a part of building. So in this paper, three buildings installed wind power turbine are targed to CFD analysis and these buildings are Bahrain trade center, Discovery tower, and Pearl river tower. Bahrain trade center is the first building installed real wind turbine, Discovery tower is constructing at Texas, and Pearl river tower is designed and proved by china researchers. These buildings have very different type of wind power turbine and each turbine has different conditions f3r best power generation. Therefor this paper will focus on characteristic shape of buildings, wind power turbine type, and expected purpose of construction. Moreover, CFD analysis will show wind flow pattern and wind speed while wind is passing through wind turbine of three tall buildings. CFD analysis for three buildings make comparison the wind flow patterns with experimental result.

Optimum Design of New Type Offshore Wind Power Tower Structure (신형식 해상풍력 구조체 최적 설계)

  • Han, Taek-Hee;Yoon, Gil-Lim;Won, Deok-Hee;Oh, Young-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.388-389
    • /
    • 2012
  • Current offshore wind power towers are made of steel. As the capacity of wind power increases, the tower structures become higher. Steel structures have buckling problem and their increased slenderness ratios make them weak against buckling and vibration. In this study, double skinned composite tubular (DSCT) offshore wind power tower was proposed and its optimum design method was suggested. Fiber reinforced polymer (FRP) and steel were considered as material of the tubes. And both materials satisfied the required capacity.

  • PDF

CFD Analysis on a Tall Building Augmented Wind Turbine (풍력발전기가 설치된 고층빌딜에 대한 전산유체역학적 고찰)

  • Jeon, Wan-Ho;Yoon, Seong-Wook;Kim, Wook;Cho, Jang-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.418-421
    • /
    • 2009
  • Renewable energy or green energy is a hot issue in theses days. Since wind resource can be endlessly supplied by nature, researchers and common people are interested in study how to use that resource at home or company. Especially, many architects have tried to integrate wind power generator for a part of building. So in this paper, three buildings installed wind power turbine are targed to CFD analysis and these buildings are Bahrain trade center, Discovery tower, and Pearl river tower. Bahrain trade center is the first builidng installed real wind turbine, Discovery tower is constructing at Texas, and Pearl river tower is designed and proved by china researchers. These buildings have very different type of wind power turbine and each turbine has different conditions for best power generation. Therefor this paper will focus on characteristic shape of buildings, wind power turbine type, and expected purpose of construction. Moreover, CFD analysis will show wind flow pattern and wind speed while wind is passing through wind turbine of three tall buildings. CFD analysis for three buildings make comparison the wind flow patterns with experimental result.

  • PDF

Design Load Analysis of Current Power Rotor and Tower Interaction

  • Jo, Chul H.;Lee, Kang-Hee;Hwang, Su-Jin;Lee, Jun-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.164-168
    • /
    • 2013
  • Tidal-current power is now recognized as a clean power resource. The turbine blade is the fundamental component of a tidal current power turbine. The kinetic energy available within a tidal current can be converted into rotational power by turbine blades. While in service, turbine blades are generally subjected to cyclic fatigue loading due to their rotation and the rotor-tower interaction. Predicting the fatigue life under a hydrodynamic fatigue load is very important to prevent blade failure while in service. To predict the fatigue life, hydrodynamic load data should be acquired. In this study, the vibration characteristics were analyzed based on three-dimensional unsteady simulations to obtain the cyclic fatigue load. Our results can be applied to the fatigue design of horizontal-axis tidal turbines.