• 제목/요약/키워드: Power supply-insensitive

검색결과 25건 처리시간 0.019초

공급 전압 변화에 둔감한 Gbps급 저전력 LVDS I/O회로 (Power Supply-Insensitive Gbps Low Power LVDS I/O Circuits)

  • 김재곤;김삼동;황인석
    • 대한전자공학회논문지SD
    • /
    • 제44권6호
    • /
    • pp.19-27
    • /
    • 2007
  • 본 논문에서는 공급전압 변화에 둔감한 Gbps급 저전력 LVDS I/O회로를 설계하였다. 제안된 LVDS I/O는 1.8 V, $0.18\;{\mu}m$ TSMC 공정을 이용하여 설계, 시뮬레이션 및 검증하였다. 설계된 LVDS I/O회로는 송신단과 수신단을 포함한다. 제안하는 송신단은 phase splitter와 SC-CMFB를 이용한 출력버퍼로 구성된다. phase splitter의 출력은 공급 전압이 변화하여도 $50{\pm}2%$의 duty cycle을 가지며 $180{\pm}0.2^{\circ}$의 위상차를 가진다. 출력 버퍼는 SC-CMFB를 이용하여 허용 가능한 $V_{CM}$ 전압 값인 $1.2{\pm}0.1V$을 유지하도록 설계하였다. $V_{OD}$전압 또한 허용범위에서 최소값인 250 mV를 갖도록 설계하여 저전력 동작이 가능하도록 구성하였다 수신단은 38 mV의 히스테리시스 전압값을 가지면서 DC옵셋 전압값이 $0.2{\pm}2.6 V$로 넓은 공통 모드전압 범위가 가능하도록 설계하였고 공급전압 변화에도 rail-to-rail로 복원할 수 있는 기능을 가지고 있다. 또한, 수신단은 1 GHz에서 38.9 dB의 높은 전압 이득을 갖도록 설계하였다.

A Fabrication and Testing of New RC CMOS Oscillator Insensitive Supply Voltage Variation

  • Kim, Jin-su;Sa, Yui-hwan;Kim, Hi-seok;Cha, Hyeong-woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권2호
    • /
    • pp.71-76
    • /
    • 2016
  • A controller area network (CAN) receiver measures differential voltage on a bus to determine the bus level. Since 3.3V transceivers generate the same differential voltage as 5V transceivers (usually ${\geq}1.5V$), all transceivers on the bus (regardless of supply voltage) can decipher the message. In fact, the other transceivers cannot even determine or show that there is anything different about the differential voltage levels. A new CMOS RC oscillator insensitive supply voltage for clock generation in a CAN transceiver was fabricated and tested to compensate for this drawback in CAN communication. The system consists of a symmetrical circuit for voltage and current switches, two capacitors, two comparators, and an RS flip-flop. The operational principle is similar to a bistable multivibrator but the oscillation frequency can also be controlled via a bias current and reference voltage. The chip test experimental results show that oscillation frequency and power dissipation are 500 kHz and 5.48 mW, respectively at a supply voltage of 3.3 V. The chip, chip area is $0.021mm^2$, is fabricated with $0.18{\mu}m$ CMOS technology from SK hynix.

개선된 control circuit과 sense amplifier를 갖는 고속동작 embedded SRAM의 설계 (A high speed embedded SRAM with improve dcontrol circuit and sense amplifier)

  • 김진국;장일권;곽계달
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.538-541
    • /
    • 1998
  • This paper describes the development of 5.15ns 32kb asynchronous CMOS SRAM using 0.6.mu.m CMOS technology. The proposed high speed embedded SRAM is realized with optimized control circuit and sense amplifier at a power supply of 3V. Using proposed control circuit, the delay time from address input to wordline 'on' is reduced by 33% and mismatch-insensitive sense amplifier can sense a small difference of bit-line voltage fast and stably.

  • PDF

New Method to Quantify the Operation Condition for Zone 3 Impedance Relays during Low-Frequency Power Swings

  • Li, Shenghu
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.29-35
    • /
    • 2008
  • With long time setting, zone 3 impedance relays are considered insensitive to power swings, and their operation condition during power swings is seldom analyzed. Instead of ti me-consuming simulation to the swing loci, their operation condition is directly quantified by polynominal functions in this paper to find the critical swing angle and frequency for relay operation under different relay settings and system parameters. It is found: (1) the swing loci are more densely populated inside than outside of the protection region, which corresponds to long residence time and possible relay operations; (2) the relays may be sensitive to load encroac hments and stable power swings with different relay settings and system parameters; (3) the critical swing frequency may be in the range of low-frequency power swings.

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in 0.13-μm N-well CMOS

  • Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.309-315
    • /
    • 2010
  • A fully-differential low-voltage low-power electrocardiogram (ECG) amplifier by using the nonfeedback PMOS pseudo-resistors is proposed. It consists of two operational-transconductance amplifiers (OTA) in series (a preamplifier and a variable-gain amplifier). To make it insensitive to the gate leakage current of the OTA input transistor, the feedback pseudo-resistor of the conventional ECG amplifier is moved to input branch between the OP amp summing node and the DC reference voltage. Also, an OTA circuit with a Gm boosting block without reducing the output resistance (Ro) is proposed to maximize the OTA DC gain. The measurements shows the frequency bandwidth from 7 Hz to 480 Hz, the midband gain programmable from 48.7 dB to 59.5 dB, the total harmonic distortion (THD) less than 1.21% with a full voltage swing, and the power consumption of 233 nW in a 0.13 ${\mu}m$ CMOS process at the supply voltage of 0.7 V.

A MOSFET's Driver Applied to High-frequency Switching with Wide Range of Duty Cycles

  • Zhang, Zhao;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1402-1408
    • /
    • 2015
  • A MOSFET's gate driver based on magnetic coupling is investigated. The gate driver can meet the demands in applications for wide range of duty cycles and high frequency. Fully galvanic isolation can be realized, and no auxiliary supply is needed. The driver is insensitive to the leakage inductor of the isolated transformer. No gate resistor is needed to damp the oscillation, and thus the peak output current of the gate driver can be improved. Design of the driving transformer can also be made more flexible, which helps to improve the isolation voltage between the power stage and the control electronics, and aids to enhance the electromagnetic compatibility. The driver's operation principle is analyzed, and the design method for its key parameters is presented. The performance analysis is validated via experiment. The disadvantages of the traditional magnetic coupling and optical coupling have been conquered through the investigated circuit.

함수제어 기법을 이용한 Buck 컨버터 제어 (Control of the Buck Converter using the Function Control Law)

  • 이성백;원영진;김태웅
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권6호
    • /
    • pp.81-89
    • /
    • 1997
  • In order to achieve the zero voltage regulation of the output voltage, the function control law will be used. In the previous function control law, only the proportional controller is used and the stability of the closed loop system was not analyzed. In this paper, for the realization of the control law, a new method to retrieve the low frequency component of the inductor voltage is proposed and analyzed. The large signal closed loop characteristics are alos analyzed to ensure the stable operation of the system disturbances. By using the function control law in the control system, the effect of the disturbance of the supply voltage is reduced in 93.3% for the direct dusty ration method. Also, in the effect of the disturbance of the load current, the output voltage has a logn recovery-time and is changed proportionally in the direct duty ratio method, but has stable in the function control law. Finally, the analysis shows that the disturbance of the output voltage being due to the supply voltage variation can be eliminated completely and the closed loop output voltage is insensitive to the disturbance of the load current. Therefore, it is proved that by using the function control law, the switching power supply with zero-voltage regulation output voltage can be realized.

  • PDF

비동기 설계 방식기반의 저전력 뉴로모픽 하드웨어의 설계 및 구현 (Low Power Neuromorphic Hardware Design and Implementation Based on Asynchronous Design Methodology)

  • 이진경;김경기
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.68-73
    • /
    • 2020
  • This paper proposes an asynchronous circuit design methodology using a new Single Gate Sleep Convention Logic (SG-SCL) with advantages such as low area overhead, low power consumption compared with the conventional null convention logic (NCL) methodologies. The delay-insensitive NCL asynchronous circuits consist of dual-rail structures using {DATA0, DATA1, NULL} encoding which carry a significant area overhead by comparison with single-rail structures. The area overhead can lead to high power consumption. In this paper, the proposed single gate SCL deploys a power gating structure for a new {DATA, SLEEP} encoding to achieve low area overhead and low power consumption maintaining high performance during DATA cycle. In this paper, the proposed methodology has been evaluated by a liquid state machine (LSM) for pattern and digit recognition using FPGA and a 0.18 ㎛ CMOS technology with a supply voltage of 1.8 V. the LSM is a neural network (NN) algorithm similar to a spiking neural network (SNN). The experimental results show that the proposed SG-SCL LSM reduced power consumption by 10% compared to the conventional LSM.

모바일 디스플레이 디지털 인터페이스용 저전력 고속 수신기 회로의 설계 (Design of Low-Power and High-Speed Receiver for a Mobile Display Digital Interface)

  • 이천효;김정훈;이재형;김려연;윤용호;장지혜;강민철;이용진;하판봉;김영희
    • 한국정보통신학회논문지
    • /
    • 제13권7호
    • /
    • pp.1379-1385
    • /
    • 2009
  • 본 논문에서는 모바일 디스플레이 디지털 인터페이스용 저전력 고속 수신기 회로를 제안하였다. 새롭게 제안된 저전력 수신기 회로는 바이어스 전류인 싱크 전류와 소스 전류를 공급전압, 공정, 온도 및 공통 모드 입력 전압의 변 동에 대해 둔감하도록 설계되었다. 3.0V${\sim}$3.6V의 전원전압과 -40${\sim}$85$^{\circ}$C의 온도에서 450Mbps 이상의 고속 데이터 수신이 가능하다. 그리고 모의 실험결과 소모전류는500${\mu}$A 이하이다. 테스트 칩은 매그나칩 0.35${\mu}$m CMOS 공정을 이용하여 제작되었으며, 테스터 결과 데이터 수신기 회로와 데이터 복원 회로가 정상적으로 동작하는 것을 확인하였다.

WLAN을 위한 고속 링 발진기를 이용한 5.8 GHz PLL (5.8 GHz PLL using High-Speed Ring Oscillator for WLAN)

  • 김경모;최재형;김삼동;황인석
    • 전자공학회논문지SC
    • /
    • 제45권2호
    • /
    • pp.37-44
    • /
    • 2008
  • 본 논문에서는 고속 링 발진기를 이용한 WLAN용 5.8 GHz PLL을 제안하였다. 제안한 PLL에 사용된 링 발진기는 부 스큐 지연방식을 이용하여 차동 구조로 설계되었다. 따라서 Power-Supply-Injected Noise에 둔감하며, 1/f Noise를 감소시키기 위하여 Tail Current Source를 사용하지 않았다. 제안한 링 발진기는 $0{\sim}1.8V$의 컨트롤 전압에 걸쳐 $5.13{\sim}7.04GHz$의 발진주파수를 보였다. 본 논문에서 제안한 PLL 회로는 0.18 um 1.8 V TSMC CMOS 라이브러리를 기본으로 하여 설계하였고 시뮬레이션을 통하여 성능을 검증하였다. 동작 주파수는 5.8 GHz이며, Locking Time은 2.5 us, 5.8 GHz에서의 소비 전력은 59.9mW로 측정되었다.