• Title/Summary/Keyword: Power maximization

Search Result 169, Processing Time 0.022 seconds

Maximization of the Output Voltage of a Cantilevered Energy Harvester Comprising Piezoelectric Fiber Composites (압전섬유복합재 외팔보 에너지 회수장치의 출력전압 최대화)

  • Kim, Seon-Myeong;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.805-812
    • /
    • 2011
  • In this study, a cantilevered energy harvester comprising piezoelectric fiber and epoxy composites was designed and analyzed electro-mechanically. In order to maximize the power of the cantilevered energy harvester, its exciting frequency was tuned to the first natural frequency of the beam. An efficient analysis method for predicting the output voltage of the beam was developed by using the finite element method coupled with piezoelectric behavior. By using this method, the effects of geometric parameters and various piezoelectric materials on power generation were investigated and the electric characteristics were evaluated. Design optimization of the beam geometries was performed for a base model. The optimum MFC design generated a maximum electric output of 40.1 V at a first natural frequency of 24.5 Hz.

Fabrication of a Nano-Wire Grid Polarizer for Brightness Enhancement in TFT-LCD Display (TFT-LCD용 휘도 성능을 향상시키는 나노 와이어 그리드 편광 필름의 제작)

  • Huh, Jong-Wook;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.105-124
    • /
    • 2011
  • TFT-LCD consists of LCD panel on the top, circuit unit on the side and BLU on the bottom. The recent development issues of BLU-dependent TFT-LCD have been power consumption minimization, slimmerization and size maximization. As a result of this trend, LED is adopted as BLU instead of CCFL to increase brightness and to reduce thickness. In liquid crystal displays, the light efficiency is below 10% due to the loss of light in the path from a light source to an LCD panel and presence of absorptive polarizer. This low efficiency results in low brightness and high power consumption. One way to circumvent this situation is to use a reflective polarizer between backlight units and LCD panels. Since a nano-wire grid polarizer has been known as a reflective polarizer, an idea was proposed that it can be used for the enhancement of the brightness of LCD. The use of reflective polarizing film is increasing as edge type LED TV and 3D TV markets are growing. This study has been carried out to fabrication of the nano-wire grid polarizer(NWGP) and investigated the brightness enhancement of LCD through polarization recycling by placing a NWGP between an c and a backlight unit. NWGPs with a pitch of 200nm were fabricated using laser interference lithography and aluminum sputtering and wet etching. And The NWGP fabrication process was using by the UV imprinting and was applied to plastic PET film. In this case, the brightness of an LCD with NWGPs was 1.21 times higher than that without NWGPs due to polarization recycling.

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.

Method for Channel Estimation in Ambient Backscatter Communication (주변 후방산란 통신에서의 채널 추정기법)

  • Kim, Soo-Hyun;Lee, Donggu;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Shin, Yoan;Kim, Dong-In;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.7-12
    • /
    • 2019
  • Ambient backscatter communication is limited to channel estimation technique through a pilot signal, which is a channel estimation method in current RF communication, due to transmission power efficiency. In a limited transmission power environment, the research of traditional ambient backscatter communication has been studied assuming that it is an ideal channel without signal distortions due to channel conditions. In this paper, we propose an expectation-maximization(EM) algorithm, one of the blind channel estimation techniques, as a channel estimation method in ambient backscatter communication system which is the state of channel following normal distribution. In the proposed system model, the simulations confirm that channel estimate through EM algorithm is approaching the lower bound of the mean square error compared with the Bayesian Cramer-Rao Boundary(BCRB) to check performance. It shows that the channel parameter can be estimated in the ambient backscatter communication system.

A Study on the Economic Efficiency of Capital Market (자본시장(資本市場)의 경제적(經濟的) 효율성(效率性)에 관한 연구(硏究))

  • Nam, Soo-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.2 no.1
    • /
    • pp.55-75
    • /
    • 1986
  • This article is to analyse the economic efficiency of capital market, which plays a role of resource allocation in terms of financial claims such as stock and bond. It provides various contributions to the welfare theoretical aspects of modern capital market theory. The key feature that distinguishes the theory described here from traditional welfare theory is the presence of uncertainty. Securities has time dimensions and the state and outcome of the future are really uncertain. This problem resulting from this uncertainty can be solved by complete market, but it has a weak power to explain real stock market. Capital Market is faced with the uncertainity because it is a kind of incomplete market. Individuals and firms in capital market made their consumption-investment decision by their own criteria, i. e. the maximization of expected utility form intertemporal consumption and the maximization of the market value of firm. We noted that allocative decisions that had to be made in the economy could be naturally subdivided into two groups. One set of decisions concerned the allocation of first-period resources among consumption $C_i$, investment in risky firms $I_j$, and riskless investment M. The other decisions concern the distribution among individuals of income available in the second period $Y_i(\theta)$. Corresponing to this grouping, the theoretical analysis of efficiency has also been dichotomized. The optimality of the distribution of output in the second period is distributive efficiency" and the optimality of the allocation of first-period resources is 'the efficiency of investment'. We have found in the distributive efficiency that the conditions for attainability is the same as the conditions for market optimality. The necessary and sufficient conditions for attainability or market optimality is that (1) all utility functions are such that -$\frac{{U_i}^'(Y_i)}{{U_i}^"(Y_i)}={\mu}_i+{\lambda}Y_i$-linear risk tolerance function where the coefficients ${\mu}_i$ and $\lambda$ are independent of $Y_i$, and (2) there are homogeneous expectations, i. e. ${\Large f}_i(\theta)={\Large f}(\theta)$ for every i. On the other hand, the efficiency of investment has disagreement about optimal investment level. The investment level for market rule will not generally lead to Pareto-optimal allocation of investment. This suboptimality is caused by (1)the difference of Diamond's decomposable production function and mean-variance valuation model and (2) the selection of exelusive investment or competitive investment. In conclusion, this article has made an analysis of conditions and processes of Pareto-optimal allocation of resources in capital marker and tried to connect with significant issues in modern finance.

  • PDF

Application of Linear Tracking to the Multi-reservours System Operation in Han River for Hydro-power Maximization (한강수계 복합 저수지 시스템의 최적 수력발전 운영을 위한 LINEAR TRACKING의 적용)

  • Yu, Ju-Hwan;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.579-591
    • /
    • 1999
  • The operation of a reservoir system is necessary for establishing the operation rule as well as designing the reservoirs for water resources planning or management. Increasingly complex water resource systems require more advanced operation techniques. As a result, various techniques have been introduced and applied until now. In this study Linear Tracking model based on optimal control theory is applied to the operation of the largest scale multi-reservoir system in the Han river and its applicability proved. This system normally supplies the water resources required downstream for hydro-power and plays a role in satisfying the water demand of the Capital region. For the optimal use of the water resources the Linear Tracking model is designed with the objective to maximize the hydro-power energy subject to the water supply demand. The multi-reservoir system includes the seven main reservoirs in IIan river such as Hwachon, Soyanggang, Chunchon, Uiam, Cheongpyong, Chungju and Paldang. These reservoirs have been monthly operated for the past 21 years. Operation results are analyzed with respect to both hydro"power energy and water supply. Additionally the efficiency of the technique is assessed.sessed.

  • PDF

Proposal of Performance Evaluation Methodology for Hydropower Reservoirs with Resilience Index (회복탄력성을 고려한 발전용댐의 성능평가 방법론 제안)

  • Kim, Dong Hyun;Yoo, Hyung Ju;Shin, Hong-Joon;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2022
  • Recently, water resources and energy policies such as integrated water management and carbon neutrality are changing rapidly. There is an opinion that the value of hydropower reservoirs related to these policies should be re-evaluated. In the past, they have contributed to flood control in addition to electricity generation, such as operating at a limited water level during the flood season, but loss of power generation is inevitable with this operation. Therefore, this study introduced the concept of resilience to the hydropower generation system to minimize the power loss. A framework for evaluating the power generation performance of them was presented by defining the maximization of electricity sales as performance. Based on the current procedure of multiple operation plan, a scenario was established and simulation was performed using HEC-5. As a result of applying to the framework, it was confirmed that the power generation performance according to each scenario was evaluated as an important factor. And it was confirmed that the performance of flood control and water use could also be evaluated.

Comparison of Compton Image Reconstruction Algorithms for Estimation of Internal Radioactivity Distribution in Concrete Waste During Decommissioning of Nuclear Power Plant (원전 해체 시 방사성 콘크리트 폐기물 내부 방사능 분포 예측을 위한 컴프턴 영상 재구성 방법의 비교)

  • Lee, Tae-Woong;Jo, Seong-Min;Yoon, Chang-Yeon;Kim, Nak-Jeom
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.217-225
    • /
    • 2020
  • Concrete waste accounts for approximately 70~80% of the total waste generated during the decommissioning of nuclear power plants (NPPs). Based upon the concentration of each radionuclide, the concrete waste from the decommissioning can be used in the determination of the clearance threshold used to classify waste as radioactive. To reduce the cost of radioactive concrete waste disposal, it is important to perform decontamination before self-disposal or limited recycling. Therefore, it is necessary to estimate the internal radioactivity distribution of radioactive concrete waste to ensure effective decontamination. In this study, the performance metrics of various Compton reconstruction algorithms were compared in order to identify the best strategy to estimate the internal radioactivity distribution in concrete waste during the decommissioning of NPPs. Four reconstruction algorithms, namely, simple back-projection, filtered back-projection, maximum likelihood expectation maximization (MLEM), and energy-deconvolution MLEM (E-MLEM) were used as Compton reconstruction algorithms. Subsequently, the results obtained by using these various reconstruction algorithms were compared with one another and evaluated, using quantitative evaluation methods. The MLEM and E-MLEM reconstruction algorithms exhibited the best performance in maintaining a high image resolution and signal-to-noise ratio (SNR), respectively. The results of this study demonstrate the feasibility of using Compton images in the estimation of the internal radioactive distribution of concrete during the decommissioning of NPPs.

A Fast Scattered Pilot Synchronization Algorithm for DVB-H receiver modem (DVB-H 수신기 모뎀을 위한 고속 분산 파일럿 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Lee Hyun;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1081-1091
    • /
    • 2005
  • Unlike conventional DVB-T transmission with the streaming method, DVB-H system based on the IPDC(IP Data Casting) method uses Time-slicing scheme to achieve the maximization of portability by reducing the power consumption of a receiver. To enhance the power efficiency of the receiver, Time-slicing scheme controls the receiver operation to perform only for corresponding burst in specific time slot. The additional power saving can also be achieved by reducing the required time for synchronization. In this paper, we propose a fast scattered pilot synchronization algorithm, which detects the pilot pattern of currently received OFDM symbol. The proposed scheme is based on the correlation between the adjacent subcarriers of potential scattered pilot position in two consecutively received OFDM symbols. Therefore, it can reduce the time for the scattered pilot synchronization within two symbols as com-pared with the conventional method used for DVB-T. And the proposed algorithm has better performance than the two schemes proposed by Nokia for DVB-H and the method using correlation with reference signal. Extensive com-puter simulation is performed based on ETSI EN300 744 ETSI and performance results show that the proposed algorithm has more efficient and stable operation than the conventional schemes.

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.