• Title/Summary/Keyword: Power intensity

Search Result 1,347, Processing Time 0.025 seconds

Relative Transmittance and Emission Intensity of Optical Emission Spectroscopy for Fault Detection Application of Reactive Ion Etching (Reactive Ion Etching에서 Optical Emission Spectroscopy의 투과율과 강도를 이용한 에러 감지 기술 제안)

  • Park, Jin-Su;Mun, Sei-Young;Cho, Il-Hwan;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.473-474
    • /
    • 2008
  • This paper proposes that the relative transmittance and emission intensity measured via optical emission spectroscopy (OES) is a useful for fault detection of reactive ion etch process. With the increased requests for non-invasive as well as real-time plasma process monitoring for fault detection and classification (FDC), OES is suggested as a useful diagnostic tool that satisfies both of the requirements. Relative optical transmittance and emission intensity of oxygen plasma acquired from various process conditions are directly compared with the process variables, such as RF power, oxygen flow and chamber pressure. The changes of RF power and Pressure are linearly proportional to the emission intensity while the change of gas flow can be detected with the relative transmittance.

  • PDF

Characteristics of Injection-Locked High Power Diode Laser (고출력 다이오드 레이저의 주입-잠금 과정 연구)

  • 문한섭;김중복;이호성;양성훈;김점술
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.222-227
    • /
    • 1995
  • A single mode, 100-mW diode laser was injection-locked by the master laser which was spectrally narrowed with Littman-type grating feedback. In the incomplete-injection-locking, we observed that two frequencies were simultaneously generated from the slave laser. The power ratio and frequency shift of two frequency components were proportional to the square of injected laser intensity. When the ratio of the injection intensity to the slave laser intensity was about $10^{-3}$, the injection-locking bandwidth was to be about 1.4 GHz. The bandwidth proportionally increased to the square root of the injection intensity, which was in good agreement with the theoretical predictions. The Iinewidth of the locked-laser was about 2.5 MHz, which was five times as narrow as that of free-running operation. ation.

  • PDF

Active Control of Vibrational Intensity in a Compound Vibratory System (복합진동계의 진동 인텐시티 능동 제어)

  • Kim, Gi-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.109-118
    • /
    • 2002
  • The vibrational intensity and the dynamic response of a compound vibratory system had been controlled actively by means of a feedforward control method. A compound vibratory system consists of a flexible beam and two discrete systems - a vibrating source and a dynamic absorber. By considering the interactive motions between discrete systems and a flexible beam, the equations of motion for a compound vibratory system were derived using a method of variation of parameters. To define the optimal conditions of a controller the cost function, which denotes a time averaged power flow, was evaluated numerically. The possibility of reductions of both of vibrational intensity and dynamic response at a control point located at a distance from a source were fecund to depend on the positions of a source, a control point and a controller. Especially the presence of a dynamic absorber gives the more reduction on the dynamic response but the less on the vibrational intensity than those without a dynamic absorber.

Structural Integrity Evaluation for Interference-fit Flywheels in Reactor Coolant Pumps of Nuclear Power Plants

  • Park June-soo;Song Ha-cheol;Yoon Ki-seok;Choi Taek-sang;Park Jai-hak
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1988-1997
    • /
    • 2005
  • This study is concerned with structural integrity evaluations for the interference-fit flywheels in reactor coolant pumps (RCPs) of nuclear power plants. Stresses in the flywheel due to the shrinkage loads and centrifugal loads at the RCP normal operation speed, design overspeed and joint-release speed are obtained using the finite element method (FEM), where release of the deformation-controlled stresses as a result of structural interactions during rotation is considered. Fracture mechanics evaluations for a series of cracks assumed to exist in the flywheel are conducted, considering ductile (fatigue) and non-ductile fracture, and stress intensity factors are obtained for the cracks using the finite element alternating method (FEAM). From analysis results, it is found that fatigue crack growth rates calculated are negligible for smaller cracks. Meanwhile, the material resistance to non-ductile fracture in terms of the critical stress intensity factor (K$_{IC}$) and the nil-ductility transition reference temperature (RT$_{NDT}$) are governing factors for larger cracks.

A Calibration Study of Therapeutic Ultrasound Equipment Output Intensity Accuracy

  • Yuk, Goon-Chang;Ahn, Sang-Ho;Park, So-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.37-42
    • /
    • 2011
  • Purpose: The principal objective of this study was to evaluate the power output of ultrasound in Korean clinics and compare the value with Korean and global standards. Methods: A total of 69 units were measured for ultrasound power output. The normal range of power output level was ${\pm}30%$ of the output set according to KFDA standards. Device model, manufacturer, ERA, and BNR were obtained via simple questionnaires. A portable ultrasound power meter was used for output measurement. Results: 37 machines, with reported ERA values, were assessed for power output per unit area. Of these machines, 13 (37.14%) were considered to be compliant with US FDA standards at 0.5, 1.0, 1.5, $20W/cm^2$ and 18 (51.43%) were considered within KFDA standards. The remainder of the machines were outside the standard error and evidenced irregular output levels, even though most of them were the same model. Conclusion: Appropriate ultrasound intensity is incredibly important for safety and effective use. Therefore, the KFDA standards regarding ultrasound may require revision in light of global standards, including BNR and ERA additionally, attention should be paid to regular calibration for safe use in clinical practice.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

Design and Structural Safety Evaluation of the High Burn-up PWR Spent Nuclear Fuel for Storage Cask

  • Taehyung Na;Youngoh Lee;Yeji Kim;Donghee Lee;Taehyeon Kim;Kiyoung Kim;Yongdeog Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.201-210
    • /
    • 2024
  • Because most spent nuclear fuel storage casks have been designed for low burnup fuel, a safety-significant high burnup dry storage cask must be developed for nuclear facilities in Korea to store the increasing high burnup and damaged fuels. More than 20% of fuels generated by PWRs comprise high burnup fuels. This study conducted a structural safety evaluation of the preliminary designs for a high burnup storage cask with 21 spent nuclear fuels and evaluated feasible loading conditions under normal, off-normal, and accident conditions. Two types of metal and concrete storage casks were used in the evaluation. Structural integrity was assessed by comparing load combinations and stress intensity limits under each condition. Evaluation results showed that the storage cask had secured structural integrity as it satisfied the stress intensity limit under normal, off-normal, and accident conditions. These results can be used as baseline data for the detailed design of high burnup storage casks.

Study on Measurements of the In-Plane Vibration Intensity In a Beam With a Damped End (감쇠 단을 갖는 보의 면내 진동인텐시티 측정에 관한 연구)

  • Kim Chang-Yeol;Kil Hyun-Gwon;Hong Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.371-378
    • /
    • 2005
  • The objective or this paper is to measure the in-plane vibration intensity of a beam with a damped end that means the magnitude and direction of vibration power. Three experimental methods have been implemented to measure the in-plane vibration intensity over the beam. The first method is the accelerometer array method using two accelerometers. The second method is the frequency response function method using the only one accelerometer. The third method is the reference accelerometer method using a fixed reference accelerometer and another moving accelerometer. Those methods have been used to measure the spatial distribution of in-plane vibration intensity over the beam. The results obtained with those methods have been compared with each other. The results have been compared with an input power. It showed that the frequency response function method and the reference accelerometer method as well as the accelerometer array method can be effectively used to measure the in-plane vibration intensity in beams.

Vibration Power Flow Analysis of Coupled Shell Structures (연성된 쉘 구조물의 진동 파워흐름해석)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.352.2-352
    • /
    • 2002
  • In this paper, Power Flow Analysis (PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. (omitted)

  • PDF

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.