• 제목/요약/키워드: Power grid

검색결과 2,996건 처리시간 0.029초

The Digital Transformation of Power Grid under the Background of Artificial Intelligence

  • Li Liu;Zhiqi Li;Sujuan Deng;Yilei Zhao;Yuening Wang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.302-309
    • /
    • 2023
  • Artificial intelligence (AI) plays a crucial role in the intelligent development of China's power system. It is also an important part of the digital development of the power grid. The development of AI determines whether the digital transformation of China's power system can be successfully implemented. Therefore, this paper discusses the digital transformation of the power grid based on AI technologies. The author has established a digital evaluation index system to reflect the development of the power grid in one province. Both qualitative and quantitative methods have been adopted in the analysis, which delves into the economic effectiveness, quality, and coordination of power grid development in the province in a comprehensive way. Results show that, to meet the needs of the power grid's digital transformation, the correlation coefficient between the power grid's development and the province's overall coordination has been increasing in recent years.

Smart Grid-The next Generation Electricity Grid with Power Flow Optimization and High Power Quality

  • Hu, Jiefeng;Zhu, Jianguo;Platt, Glenn
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.425-433
    • /
    • 2012
  • As the demand for electric power increases rapidly and the amount of fossil fuels decreases year by year, making use of renewable resources seem very necessary. However, due to the discontinuous nature of renewable resources and the hierarchical topology of existing grids, power quality and grid stability will deteriorate as more and more distributed generations (DGs) are connected to the grids. It is a good idea to combine local utilization, local consumption, energy storage and DGs to form a grid-friendly micro grid, these micro grids can then assembled into an intelligent power system - the smart Grid. It can optimize power flow and integrate power generation and consumption effectively. Most importantly, the power quality and grid stability can be improved greatly. This paper depicts how the smart grid addresses the current issues of a power system. It also figures out the key technologies and expectations of the smart grid.

Topological and Statistical Analysis for the High-Voltage Transmission Networks in the Korean Power Grid

  • Kang, Seok-Gu;Yoon, Sung-Guk
    • 한국통신학회논문지
    • /
    • 제42권4호
    • /
    • pp.923-931
    • /
    • 2017
  • A power grid is one of the most complex networks and is critical infrastructure for society. To understand the characteristics of a power grid, complex network analysis has been used from the early 2000s mainly for US and European power grids. However, since the power grids of different countries might have different structures, the Korean power grid needs to be examined through complex network analysis. This paper performs the analysis for the Korean power grid, especially for high-voltage transmission networks. In addition, statistical and small-world characteristics for the Korean power grid are analyzed. Generally, the Korean power grid has similar characteristics to other power grids, but some characteristics differ because the Korean power grid is concentrated in the capital area.

The Analysis of Active Power Control Requirements in the Selected Grid Codes for Wind Farm

  • Kim, Mi-Young;Song, Yong-Un
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1408-1414
    • /
    • 2015
  • The renewable energies such as photovoltaic power, wind power and biomass have grown to a greater extent as decarbonization techniques. The renewable energies are interconnected to power systems (or electrical grids) in order to increase benefits from economies of scale, and the extra attention is focused on the Grid Code. A grid code defines technical parameters that power plants must meet to ensure functions of power systems, and the grid code determined by considering power system characteristics is various across the country. Some TSO (Transmission System Operator) and ISO (Independent System Operator) have issued grid code for wind power and the special requirements for offshore wind farm. The main purpose of the above grid code is that wind farm in power systems has to act as the existing power plants. Therefore wind farm developer and wind turbine manufacturer have great difficulty in grasping and meeting grid code requirements. This paper presents the basic understanding for grid codes of developed countries in the wind power and trends of those technical requirements. Moreover, in grid code viewpoint, the active power control of wind power is also discussed in details.

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

전력 IT 기반스마트 파워그리드 실증 보안 체계 설계 (A Security Design for a Smart Power Grid Field Test based-on Power IT Systems)

  • 이명훈;배시화;손성용
    • 한국정보통신학회논문지
    • /
    • 제14권11호
    • /
    • pp.2497-2506
    • /
    • 2010
  • 최근 진행되고 있는 제주 스마트그리드 실증에서 스마트 파워 그리드는 특히 기존의 전력 IT 기술의 통합을 통한 전력 계통 운영의 개선을 목표로 하고 있다. 스마트 파워 그리드의 구축을 위해서는 전력망의 실시간 양방향 통신과 상호 연동성이 필수적이다. 그러나, 스마트그리드의 도입으로 인한 무선 센서 수와 통신망의 외부 노출기회의 증가는 전력망의 보안취약점을 증가시킨다. 또한, 통신망의 데이터 도청 및 위변조 공격을 통한 해커의 공격은 전력 계통 시스템에 대한 혼란을 야기 시킬 수 있다. 스마트 파워 그리드는 스마트그리드의 추진을 위해 가장 핵심이 되는 시스템의 하나로 문제의 발생시 스마트그리드의 존립을 위협하게 되므로 체계적인 보안설계가 필수적이다. 본 논문에서는 국내외 스마트 그리드 보안 표준 및 전력 계통 시스템의 보안 취약점 및 요구사항 분석을 기반으로 스마트 파워 그리드 실증을 위한 2단계 보안 서비스 모델을 제안하였다.

Research on Grid Side Power Factor of Unity Compensation Method for Matrix Converters

  • Xia, Yihui;Zhang, Xiaofeng;Ye, Zhihao;Qiao, Mingzhong
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1380-1392
    • /
    • 2019
  • Input filters are very important to matrix converters (MCs). They are used to improve grid side current waveform quality and to reduce the input voltage distortion supplied to the grid side. Due to the effects of the input filter and the output power, the grid side power factor (PF) is not at unity when the input power factor angle is zero. In this paper, the displacement angle between the grid side phase current and the phase voltage affected by the input filter parameters and output power is analyzed. Based on this, a new grid side PF unity compensation method implemented in the indirect space vector pulse width modulation (ISVPWM) method is presented, which has a larger compensation angle than the traditional compensation method, showing a higher grid side PF at unity in a wide output power range. Simulation and experimental results verify that the analysis of the displacement angle between the grid side phase current and the phase voltage affected by the input filter and output power is right and that the proposed compensation method has a better grid side PF at unity.

Design and Evaluation of PMU Performance Measurement and GPS Monitoring System for Power Grid Stabilization

  • Yang, Sung-Hoon;Lee, Chang Bok;Lee, Young Kyu;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권2호
    • /
    • pp.67-72
    • /
    • 2015
  • Power grid techniques are distributed over general power systems ranging from power stations to power transmission, power distribution, and users. To monitor and control the elements and performance of a power system in real time in the extensive area of power generation, power transmission, wide-area monitoring (WAM) and control techniques are required (Sattinger et al. 2007). Also, to efficiently operate a power grid, integrated techniques of information and communication technology are required for the application of communication network and relevant equipment, computing, and system control software. WAM should make a precise power grid measurement of more than once per cycle by time synchronization using GPS. By collecting the measurement values of a power grid from substations located at faraway regions through remote communication, the current status of the entire power grid system can be examined. However, for GPS that is used in general national industries, unexpected dangerous situations have occurred due to its deterioration and jamming. Currently, the power grid is based on a synchronization system using GPS. Thus, interruption of the time synchronization system of the power system due to the failure or abnormal condition of GPS would have enormous effects on each field such as economy, security, and the lives of the public due to the destruction of the synchronization system of the national power grid. Developed countries have an emergency substitute system in preparation for this abnormal situation of GPS. Therefore, in Korea, a system that is used to prepare for the interruption of GPS reception should also be established on a long-term basis; but prior to this, it is required that an evaluation technique for the time synchronization performance of a GPS receiver using an atomic clock within the power grid. In this study, a monitoring system of time synchronization based on GPS at a power grid was implemented, and the results were presented.

Comparison of Two Reactive Power Definitions in DFIG Wind Power System under Grid Unbalanced Condition

  • Ha, Daesu;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.213-214
    • /
    • 2014
  • This paper compares two instantaneous reactive power definitions in DFIG wind turbine with a back-to-back three-level neutral-point clamped voltage source converter under unbalanced grid conditions. In general, conventional definition of instantaneous reactive power is obtained by taking an imaginary component of complex power. The other definition of instantaneous reactive power can be developed based on a set of voltages lagging the grid input voltages by 90 degree. A complex quantity referred as a quadrature complex power is defined. Proposed definition of instantaneous reactive power is derived by taking a real component of quadrature complex power. The characteristics of two instantaneous reactive power definitions are compared using the ripple-free stator active power control algorithm in DFIG. Instantaneous reactive power definition based on quadrature complex power has a simpler current reference calculation control block. Ripple of instantaneous active and reactive power has the same magnitude unlike in conventional definition under grid unbalance. Comparison results of two instantaneous reactive power definitions are verified through simulation.

  • PDF

전력 HILs를 활용한 스마트 인버터의 LVRT 시험 (Low Voltage Ride Through Test for Smart Inverter in Power Hardware in Loop System)

  • Sim, Junbo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.101-105
    • /
    • 2021
  • Encouragement of DER from Korean government with several policies boosts DER installation in power system. When the penetration of DER in the grid is getting high, loss of generation with break-away of DER by abnormal grid conditions should be considered, because loss of high generation causes abnormal low frequency and additional operations of protection system. Therefore, KEPCO where is Korean power utility is preparing improvement in regulations for DERs connected to the grid to support abnormal grid conditions such as low and high frequencies or voltages. This is called 'Ride Through' because the requirement is for DER to maintain grid connection during required periods when abnormal grid conditions occur. However, it is not easy to have a test for ride through capability in reality because emulation of abnormal grid conditions is not possible in real power system in operation. Also, it is not easy to have a study on grid effect when ride through capability fails with the same reason. PHILs (Power Hardware In the Loop System) makes it possible to analyze power system and hardware performance at once. Therefore, this paper introduces PHILs test methods and presents verification of ride through capability especially for low voltage grid conditions.