DOI QR코드

DOI QR Code

Research on Grid Side Power Factor of Unity Compensation Method for Matrix Converters

  • Xia, Yihui (Department of Electric Engineering, Naval University of Engineering) ;
  • Zhang, Xiaofeng (Department of Electric Engineering, Naval University of Engineering) ;
  • Ye, Zhihao (Department of Electric Engineering, Naval University of Engineering) ;
  • Qiao, Mingzhong (Department of Electric Engineering, Naval University of Engineering)
  • Received : 2018.12.29
  • Accepted : 2019.06.21
  • Published : 2019.11.20

Abstract

Input filters are very important to matrix converters (MCs). They are used to improve grid side current waveform quality and to reduce the input voltage distortion supplied to the grid side. Due to the effects of the input filter and the output power, the grid side power factor (PF) is not at unity when the input power factor angle is zero. In this paper, the displacement angle between the grid side phase current and the phase voltage affected by the input filter parameters and output power is analyzed. Based on this, a new grid side PF unity compensation method implemented in the indirect space vector pulse width modulation (ISVPWM) method is presented, which has a larger compensation angle than the traditional compensation method, showing a higher grid side PF at unity in a wide output power range. Simulation and experimental results verify that the analysis of the displacement angle between the grid side phase current and the phase voltage affected by the input filter and output power is right and that the proposed compensation method has a better grid side PF at unity.

Keywords

References

  1. M. Siami, D. A. Khaburi, and J. Rodriguez, “Simplified finite control set-model predictive control for matrix converter-fed PMSM drives,” IEEE Trans. Power Electron., Vol. 33, No. 3, pp. 2438-2446, Mar. 2018. https://doi.org/10.1109/TPEL.2017.2696902
  2. T. D. Nguyen and H. H. Lee, “A new SVM method for an indirect matrix converter with common-mode voltage reduction,” IEEE Trans. Ind. Informat., Vol. 10, No. 1, pp. 61-726, Feb. 2014. https://doi.org/10.1109/TII.2013.2255032
  3. Y. H. Xia, X. F. Zhang, and M. Z. Qiao, "An improved multi-orbit vector weighted over-modulation method of matrix converter," Proc. the CSEE., Vol. 35, No.23, pp. 6143-6151, Dec. 2015.
  4. A. Trentin, P. Zanchetta, J. Clare, and P. Wheeler, “Automated optimal design of input filter for direct AC/AC matrix converter,” IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2811-2822, Jul. 2012. https://doi.org/10.1109/TIE.2011.2163283
  5. S. F. Pinto and J. F. Silva, "Input filter design for sliding mode controlled matrix converters," in Proc. 32nd IEEE Annu. Power Electron. Spec. Conf., Vol. 2, pp. 648-653, 2011.
  6. S. F. Pinto and J. F. Silva, "Direct control method for matrix converters with input power factor regulation," in Proc. 35th IEEE Power Electron . Spec. Conf., Vol. 3, pp. 2366-2372, 2004.
  7. T. Kume, K. Yamada, T. Higuchi, E. Yamamoto, H. Hara, T. Sawa, and M. M. Swamy, “Integrated filters and their combined effects in matrix converter,” IEEE Trans. Ind. Appl., Vol. 43, No. 2, pp. 571-581, Mar./Apr. 2007. https://doi.org/10.1109/TIA.2006.889971
  8. P. Siwek, "Input filter optimization for a DTC driven matrix converter-fed PMSM drive," in Proc. 23th MMAR. Conf., pp. 35-40, 2018.
  9. M. Rivera, M. Amirbande, and A. Vahedi, "Predictive control strategies operating at fixed switching frequency for input filter resonance mitigation in an indirect matrix converter," in Proc. IEEE. Sou. Pow. Ele. Conf., pp. 1-6, Dec. 2017.
  10. A. K. Sahoo, K. Basu, and A. Mahan, “Systematic input filter design of matrix converter by analytical estimation of RMS current ripple,” IEEE Trans. Ind. Informat., Vol. 62, No. 1, pp. 132-143, Jan. 2015. https://doi.org/10.1109/TIE.2014.2331032
  11. D. Casadei, G. Serra, A. Tani, A. Trentin, and L. Zarri, “Theoretical and experimental investigation on the stability of matrix converters,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1409-1419, Oct. 2005. https://doi.org/10.1109/TIE.2005.855655
  12. D. Casadei, G. Serra, and A. Tani, "Improvement of the stability of electrical drives fed by matrix converters," in Pro. IEEE Seminar on Matrix Converters, Birmingham, U.K., pp. 3/1-3/12, 2003.
  13. D. Casadei, G. Serra, and A. Tani, “Effects on input voltage measurment on stability of matrix coverter drive system,” Proc. IEE-Electr-Electr. Power Appl., Vol. 151, No. 4, pp. 487-497, 2004. https://doi.org/10.1049/ip-epa:20040429
  14. D. Casadei, J. Clare, L. Emprinham, G. Serra, A. Trentin, P. Wheeler, and L. Zarri, “Large-signal model for the stability analysis of matrix converters,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 939-950, Apr. 2007. https://doi.org/10.1109/TIE.2007.891999
  15. N. Han, B. Zhou, and J. Yu, X. Qin, J. Lei, and Yang Yang, “A novel source current control strategy and its stability analysis for an indirect matrix converter,” IEEE Trans. Pow. Eletron., Vol. 32, No. 10, pp. 8181-8192, Oct. 2017. https://doi.org/10.1109/TPEL.2016.2637062
  16. Y. Sun, M. Su, and X. Li, H Wang, and W. H. Gui, “A general constructive approach to matrix converter stabilization,” IEEE Trans. Pow. Electron., Vol. 28, No. 1, pp. 418-441, Jan, 2013. https://doi.org/10.1109/TPEL.2012.2199767
  17. L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Trans. Ind. Appl., Vol. 31, No. 6, pp. 1234-1256, Nov. 1995. https://doi.org/10.1109/28.475693
  18. M. Rivera, C. Rojas, J. Rodriguez, P. Wheeler, B. Wu, and J. Espinoza, “Predictive current control with input filter resonance mitigation for a direct matrix converter,” IEEE Trans. Power Electron., Vol. 26, No. 10, pp. 2794-2803, Oct, 2007. https://doi.org/10.1109/TPEL.2011.2121920
  19. H. M. Nguyen, H. H. Lee, and T. W. Chun, “Input power factor compensation algorithms using a new direct-SVM method for matrix converter,” IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 232-243, Jan. 2011. https://doi.org/10.1109/TIE.2010.2044736
  20. R. Metidji, B. Metidji, and B. Metidji, “Design and implementation of a unity power factor fuzzy battery charger using ultrasparse matrix converter,” IEEE Trans. Pow. Electron., Vol. 28, No. 5, pp. 2269-2276, May 2013. https://doi.org/10.1109/TPEL.2012.2211107
  21. M. Rivera, J. Rodriguez, J. R. Espinoza, and H. Abu-Rub, “Instantaneous reactive power minimization and current control for an indirect matrix converter under a distorted AC supply,” IEEE Trans. Ind. Electron., Vol. 8, No. 3, pp. 482-590, Aug. 2012.
  22. M. Rivera, J. Rodriguez, and J. R. Espinoza, T. Friedli, J.W. Kolar, A. Wilson, and C. A. Rojas, “Imposed sinusoidal source and load currents for an indirect matrix converter,” IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp. 3427-3435, Sep. 2012. https://doi.org/10.1109/TIE.2011.2172171
  23. F. Schafmeister and J. W. Kolar, “Novel hybrid modulation schemes significantly extending the reactive power control range of all matrix converter topologies with low computational effort,” IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 194-210, Jan. 2012. https://doi.org/10.1109/TIE.2011.2158045
  24. X. Li, M. Su, and Y. Sun, H. B. Dan, and W. J. Xiong, “Modulation strategy based on mathematical construction for matrix converter extending the input reactive power range,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 654-664, Feb. 2014. https://doi.org/10.1109/TPEL.2013.2256929
  25. X. Li, Y. Sun, and J. X. Zhang, M. Su, and S. D. Huang, “Modulation methods for indirect matrix converter extending the input reactive power range,” IEEE Trans. Power Electron., Vol. 32, No. 6, pp. 4852-4863, Jun. 2017. https://doi.org/10.1109/TPEL.2016.2599642
  26. S. Mondal and D. Kastha, “Maximum active and reactive power capability of a matrix converter-fed DFIG-based wind energy conversion system,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 3, pp. 1322-1333, Sep. 2017. https://doi.org/10.1109/JESTPE.2017.2697038
  27. S. Mondal and D. Kastha, "Improved direct torque and reactive power control of a matrix-converter-fed grid-connected doubly fed induction generator," IEEE Trans. Ind. Electron., Vol. 62, No. 12, pp. 7590-7598, Dec. 2015. https://doi.org/10.1109/TIE.2015.2459056
  28. A. Yousefi-Talouki, E. Pouresmaeil, and B. N. Jorgensen, "Active and reactive power ripple minimization in direct power control of matrix converter-fed DFIG," Int. J. Electr. Power Energy Syst., Vol. 63, pp. 600-608, Dec. 2014. https://doi.org/10.1016/j.ijepes.2014.06.041
  29. R. Cardenas, R. Pena, P. Wheeler, J. Clare, A. Munoz, and A. Sureda, "Control of a wind generation system based on a brushless doubly-fed induction generator fed by a matrix converter," Electr. Power Syst. Res., Vol. 103, pp. 49-60, Oct. 2013. https://doi.org/10.1016/j.epsr.2013.04.006
  30. H. Hojabri, H. Mokhtari, and L. Chang, “Reactive power control of permanent-magnet synchronous wind generator with matrix converter,” IEEE Trans. Power Del., Vol. 28, No. 2, pp. 575-584, Apr. 2013. https://doi.org/10.1109/TPWRD.2012.2229721
  31. H. She, H. Lin, B. He, X. Wang, L. Yue, and X. An, "Implementation of voltage-based commutation in space-vector-modulated matrix converter," IEEE Trans. Ind. Eletron., Vol. 59, No. 1, pp.154-166, Jan. 2012. https://doi.org/10.1109/TIE.2011.2130497